Abstract:
Embodiments of the present disclosure relate to the field of electronics and, in particular, to a multi-layer printed circuit board and a method for fabricating the same. The circuit board is able to avoid the problem that signal transmission performance is affected by a plated hole. The multi-layer printed circuit board includes at least two layers of core plates that are adhered, where a circuit mechanical part is disposed on the core plates, a via is also provided on the core plates, and a metal column is embedded in the via, where one end of the metal column is connected to a corresponding position on an antenna feeder circuit mechanical part disposed on the core plate, and the other end is connected to a corresponding position on an antenna feeder circuit mechanical part disposed on an adjacent layer of the core plate. The method is used for fabricating a multi-layer printed circuit board.
Abstract:
A packaging structure and a power amplifier, the packaging structure including a first component, a second component, a printed circuit board, and a metal plate having an etched pattern. The printed circuit board is disposed on the metal plate, and the printed circuit board has an open slot. The first component is disposed in the open slot, and the first component is disposed on the metal plate. The first component is connected to the printed circuit board, the second component is disposed on the printed circuit board, and the second component is connected to the printed circuit board.
Abstract:
Embodiments of the present disclosure relate to the field of electronics and, in particular, to a multi-layer printed circuit board and a method for fabricating the same. The circuit board is able to avoid the problem that signal transmission performance is affected by a plated hole. The multi-layer printed circuit board includes at least two layers of core plates that are adhered, where a circuit mechanical part is disposed on the core plates, a via is also provided on the core plates, and a metal column is embedded in the via, where one end of the metal column is connected to a corresponding position on an antenna feeder circuit mechanical part disposed on the core plate, and the other end is connected to a corresponding position on an antenna feeder circuit mechanical part disposed on an adjacent layer of the core plate. The method is used for fabricating a multi-layer printed circuit board.
Abstract:
A printed circuit board (PCB) backdrilling method is disclosed, where a conductive layer is disposed between a surface of a PCB on an intended-for-backdrilling side of a plated through hole (PTH) and a target signal layer of the PCB, and the method includes: performing a first backdrilling on the PTH with a first preset depth starting from the surface of the PCB; controlling the backdrill bit to move along the drill hole formed in the first backdrilling toward the target signal layer; and when the backdrill bit is in contact with the conductive layer, completing a second backdrilling with a second preset depth starting from the conductive layer.
Abstract:
A printed circuit board (PCB) backdrilling method is disclosed, where a conductive layer is disposed between a surface of a PCB on an intended-for-backdrilling side of a plated through hole (PTH) and a target signal layer of the PCB, and the method includes: performing a first backdrilling on the PTH with a first preset depth starting from the surface of the PCB; controlling the backdrill bit to move along the drill hole formed in the first backdrilling toward the target signal layer; and when the backdrill bit is in contact with the conductive layer, completing a second backdrilling with a second preset depth starting from the conductive layer.