Abstract:
The present disclosure provides a data transmission method including: receiving a first-mode optical signal from a first port corresponding to a first port number; converting, according to a correspondence between the first port number and a first mode group number, the received first-mode optical signal into a second-mode optical signal carried in a first mode group identified by the first mode group number, where the second-mode optical signal carried in the first mode group identified by the first mode group number includes an optical signal in one or more modes; and outputting the second-mode optical signal obtained by means of conversion.
Abstract:
The present disclosure relates to passive optical network (PON) systems, optical line terminals (OTLs), and optical network units (ONUs). One example PON system includes an OLT and at least two ONUs. The OLT and the ONUs exchange data on one downstream channel and two upstream channels. The OLT sends downstream data to each ONU on the downstream channel, where the downstream data includes an upstream bandwidth grant used to control each ONU to send upstream data. Each ONU receives the downstream data on the downstream channel, and sends the upstream data on a first upstream channel or a second upstream channel based on the upstream bandwidth grant included in the downstream data. The OLT receives, on the first upstream channel and the second upstream channel, the upstream data sent by each ONU, where a registration function is disabled on the first upstream channel, and enabled on the second upstream channel.
Abstract:
Embodiments of the present invention disclose a fiber recognition method, an optical line terminal, and a system. The method includes: obtaining, by an optical line terminal, identification information of a fiber connected to an optical line terminal and to be recognized; generating, by the optical line terminal, a data frame that includes the identification information of the fiber to be recognized; transmitting, by the optical line terminal, optical signals that are generated according to the data frame to the fiber to be recognized, so as to make a fiber recognition instrument implement identification for the fiber to be recognized. The present invention can implement fiber recognition easily and conveniently. When a new ONU user is added to a distributed network, service interruption can also be avoided for a user who is normally using a service, and the cost is low.
Abstract:
This application provides a data reassembly method and an apparatus, to reassemble packet fragments in combination with local reassembly and cloud reassembly, so as to obtain a reassembled packet. This improves reassembly efficiency, reduces a packet reassembly delay, and reduces power consumption of an OLT. The method includes: a first OLT receives a plurality of packet fragments of a first packet that are sent by an optical network unit ONU; and if the first OLT determines that an upload condition is met, the first OLT sends the plurality of packet fragments to a cloud reassembly device, so that after receiving the plurality of packet fragments, the cloud reassembly device reassembles the plurality of packet fragments to obtain a second packet.
Abstract:
The present disclosure relates to passive optical network (PON) systems, an optical line terminal (OLT), and an optical network unit (ONU). One example PON system includes an OLT and at least two ONUs, and the OLT and the ONUs exchange data on one downstream channel and two upstream channels. The OLT sends downstream data to each ONU on the downstream channel, where the downstream data includes an upstream bandwidth grant which is used to control the ONU to send upstream data. Each ONU receives the downstream data on the downstream channel, and sends the upstream data on a first upstream channel or a second upstream channel based on the upstream bandwidth grant included in the downstream data. The OLT receives, on the first upstream channel and the second upstream channel, the upstream data sent by each ONU.
Abstract:
The present disclosure provides a data transmission method including: receiving a first-mode optical signal from a first port corresponding to a first port number; converting, according to a correspondence between the first port number and a first mode group number, the received first-mode optical signal into a second-mode optical signal carried in a first mode group identified by the first mode group number, where the second-mode optical signal carried in the first mode group identified by the first mode group number includes an optical signal in one or more modes; and outputting the second-mode optical signal obtained by means of conversion.
Abstract:
Embodiments disclose an OTDR implementation apparatus. The apparatus includes M transmitters, configured to transmit M optical waves of different wavelengths, where M is greater than or equal to 2. The apparatus also includes a processor, configured to control an OTDR detection circuit to load an OTDR detection signal onto a first transmitter, where the first transmitter is configured to only load the OTDR detection signal, and the other M−1 transmitters are configured to transmit a downlink optical signal, where the downlink optical signal is a high frequency signal. The apparatus also includes the OTDR detection circuit, configured to generate the OTDR detection signal, where the OTDR detection signal is a low frequency signal; and M receivers, where a first receiver is connected to an egress link of the M transmitters, and the other M−1 receivers are connected after a demultiplexer, and are configured to receive multiple uplink signals.
Abstract:
This application provides a data reassembly method and an apparatus, to reassemble packet fragments in combination with local reassembly and cloud reassembly, so as to obtain a reassembled packet. This improves reassembly efficiency, reduces a packet reassembly delay, and reduces power consumption of an OLT. The method includes: a first OLT receives a plurality of packet fragments of a first packet that are sent by an optical network unit ONU; and if the first OLT determines that an upload condition is met, the first OLT sends the plurality of packet fragments to a cloud reassembly device, so that after receiving the plurality of packet fragments, the cloud reassembly device reassembles the plurality of packet fragments to obtain a second packet.
Abstract:
This application discloses a communication method, an optical line terminal, and an optical network unit in a passive optical network system. The PON system includes an OLT and at least one ONU, and the method includes: receiving, by the OLT, a first message that is sent by a first ONU in the at least one ONU through a first upstream channel; determining a first round trip time (RTT) of the first ONU based on a receiving moment of the first message; determining a time window based on the first RTT; sending first indication information to the first ONU through a downstream channel, where the first indication information includes the time window; receiving a second message that is sent by the first ONU through a second upstream channel within the time window; and determining a second RTT of the first ONU based on a receiving moment of the second message.
Abstract:
Embodiments disclose an OTDR implementation apparatus. The apparatus includes M transmitters, configured to transmit M optical waves of different wavelengths, where M is greater than or equal to 2. The apparatus also includes a processor, configured to control an OTDR detection circuit to load an OTDR detection signal onto a first transmitter, where the first transmitter is configured to only load the OTDR detection signal, and the other M−1 transmitters are configured to transmit a downlink optical signal, where the downlink optical signal is a high frequency signal. The apparatus also includes the OTDR detection circuit, configured to generate the OTDR detection signal, where the OTDR detection signal is a low frequency signal; and M receivers, where a first receiver is connected to an egress link of the M transmitters, and the other M−1 receivers are connected after a demultiplexer, and are configured to receive multiple uplink signals.