Abstract:
The present invention provides an optical splitter and a system, including: an optical divider, a ribbon fiber, and tributary fibers, where the optical divider is configured to divide an input optical signal into at least two optical signals for output; one end of the ribbon fiber is connected to the optical divider, and the other end of the ribbon fiber is connected to the tributary fibers, where a grating array is disposed on the ribbon fiber; and the grating array includes at least two Bragg gratings, different Bragg gratings correspond to different tributary lines of the optical divider, and the number of Bragg gratings included in the grating array is the same as the number of optical signals output by the optical divider; which solves a problem that additional connection loss is increased because an existing splitter needs to be connected to each link fiber by using an optical connector.
Abstract:
This application provides a zoom assembly, including a first refraction component and a first lens apparatus. The first refraction component is configured to change a transmission path of light, and the first refraction component includes a first surface, a second surface, a third surface, and a first reflection structure. The three surfaces of the first refraction component are all transmission surfaces. An optical axis of the first lens apparatus is perpendicular to the second surface of the first refraction component. The first reflection structure is attached to the third surface, and is configured to receive light transmitted by one of the transmission surfaces and reflect the light to another transmission surface.
Abstract:
This application provides a zoom assembly, including a first refraction component and a first lens apparatus. The first refraction component is configured to change a transmission path of light, and the first refraction component includes a first surface, a second surface, a third surface, and a first reflection structure. The three surfaces of the first refraction component are all transmission surfaces. An optical axis of the first lens apparatus is perpendicular to the second surface of the first refraction component. The first reflection structure is attached to the third surface, and is configured to receive light transmitted by one of the transmission surfaces and reflect the light to another transmission surface.
Abstract:
The present invention provides an apparatus including: a macrobending injected-light modulation and control module, configured to modulate an injected optical signal according to a port identifier of each first port and inject the injected optical signal to an optical fiber connected to the first port; a macrobending signal detection module, configured to receive a received optical signal at a second port of an optical transmission path; a phase-locked detection module, electrically connected to the macrobending injected-light modulation and control module and the macrobending signal detection module, and configured to: when an injected optical signal that is injected by the macrobending injected-light modulation and control module to an optical fiber is consistent with a received optical signal that is acquired by the macrobending signal detection module, acquire and output port identifiers of a first port and a second port.