Abstract:
Described is a method of decoding a physical sidelink control channel (PSCCH). The method comprises: for a PSCCH candidate in a resource grid, processing a received demodulation reference signal (DMRS) in a subframe of said resource grid associated with said PSCCH candidate to determine one or more potential PSCCHs for decoding, each of said one or more potential PSCCHs being identified by resource block (RB) position in the resource grid and a corresponding DMRS cyclic shift (ncs) value. The foregoing step is repeated for at least one other DMRS in said subframe to determine one or more potential PSCCHs for said at least one other DMRS. Then, a subset L of PSCCHs is selected from said potential PSCCHs whereby said selected subset L of PSCCHs together with their corresponding DMRS cyclic shift (ncs) values are made available for use in a decoding process for the received channel signal.
Abstract:
Systems and methods which provide for accurate decoding of a received channel signal when station identifier information is unknown. Embodiments accurately decode a physical downlink control channel (PDCCH), such as to obtain downlink control information (DCI), without knowing radio network temporary identifier (RNTI) information. An unknown station identifier information (USII) of embodiments uses redundancy reduction-based error checking (performing error checking between data decoded from a candidate control channel data block containing redundant data and a portion of that candidate control channel data block containing redundancy reduced data) for implementing decoding when station identifier information is unknown. Embodiments of a USII decoder may use a power detection technique for identifying candidate control channel data blocks used in redundancy reduction-based error checking operation.
Abstract:
Systems and methods which provide white space channel identification and/or selection using high probability area determinations for a device and availability probability calculations for channels based on a probability model are described. A white space device (WSD) may utilize spectrum scanner sensing results to determine one or more course high probability area (HPA) for the WSD. The sensing results may further be analyzed to derive probability information regarding the WSD being located at the HPAs, to thereby refine the HPAs. Thereafter, the information regarding probabilities of the WSD being located at the HPAs may be utilized with information from a white space location database to determine an availability probability of one or more white space channels. One or more such white space channels may be identified and/or selected for use by the WSD.
Abstract:
Described is a method of decoding a physical sidelink control channel (PSCCH). The method comprises: for a PSCCH candidate in a resource grid, processing a received demodulation reference signal (DMRS) in a subframe of the resource grid associated with the PSCCH candidate to determine one or more potential PSCCHs for decoding, each of the one or more potential PSCCHs being identified by resource block (RB) position in the resource grid and a corresponding DMRS cyclic shift (ncs) value. This step is repeated for at least one other DMRS in the subframe to determine one or more potential PSCCHs for the at least one other DMRS. Then, a subset L of PSCCHs is selected from the potential PSCCHs. The selected subset L of PSCCHs together with their corresponding DMRS cyclic shift (ncs) values are made available for use in a decoding process for the received channel signal.
Abstract:
A method of performing carrier frequency offset (CFO) estimation and/or time offset (TO) estimation at a radio equipment in a mobile communications system. The method allows, for each of a plurality of synchronization signal (SS) blocks (SSBs) in a SS Burst detected at said radio equipment, determining a CFO estimation and/or a TO estimation based on network information signal prediction. The method includes selecting at least some of said detected SSBs in said SSB Burst and combining the CFO estimations and/or the TO estimations to obtain improved CFO compensation and/or TO compensation for signal processing at said radio equipment.
Abstract:
Systems and methods which provide white space channel identification and/or selection using high probability area determinations for a device and availability probability calculations for channels based on a probability model are described. A white space device (WSD) may utilize spectrum scanner sensing results to determine one or more course high probability area (HPA) for the WSD. The sensing results may further be analyzed to derive probability information regarding the WSD being located at the HPAs, to thereby refine the HPAs. Thereafter, the information regarding probabilities of the WSD being located at the HPAs may be utilized with information from a white space location database to determine an availability probability of one or more white space channels. One or more such white space channels may be identified and/or selected for use by the WSD.
Abstract:
Described is a method of decoding a physical sidelink shared channel (PSSCH) involving physical sidelink control channel (PSCCH) resource grid search space reduction, timing offset (TO) estimation, and reference symbol identification. Resource grid search space reduction may include identifying resource blocks (RBs) having a signal power below a first threshold such that said RBs can be excluded from further processing. Search space reduction may additionally or alternatively include identifying RB pairs where a difference in signal power between the RBs comprising each pair of RBs is above a second threshold and excluding any such said RB pairs from further processing. TO compensation may include circularly correlating TO-compensated received DMRSs and their corresponding local DMRSs to obtain energy or power profiles. From the energy/power profiles, a subset L of highest stored power values and their corresponding cyclic shift (ncs) values can be chosen where said power values are equal to or exceed a third threshold. The selected subset L can be made available for use in a decoding process for a received channel signal.
Abstract:
Described is a method of decoding a physical sidelink shared channel (PSSCH) involving physical sidelink control channel (PSCCH) resource grid search space reduction, timing offset (TO) estimation, and reference symbol identification. Resource grid search space reduction may include identifying resource blocks (RBs) having a signal power below a first threshold such that said RBs can be excluded from further processing. Search space reduction may additionally or alternatively include identifying RB pairs where a difference in signal power between the RBs comprising each pair of RBs is above a second threshold and excluding any such said RB pairs from further processing. TO compensation may include circularly correlating TO-compensated received DMRSs and their corresponding local DMRSs to obtain energy or power profiles. From the energy/power profiles, a subset L of highest stored power values and their corresponding cyclic shift (ncs) values can be chosen where said power values are equal to or exceed a third threshold. The selected subset L can be made available for use in a decoding process for a received channel signal.
Abstract:
Systems and methods which provide for accurate decoding of a received channel signal when station identifier information is unknown. Embodiments accurately decode a physical downlink control channel (PDCCH), such as to obtain downlink control information (DCI), without knowing radio network temporary identifier (RNTI) information. An unknown station identifier information (USII) of embodiments uses redundancy reduction-based error checking (performing error checking between data decoded from a candidate control channel data block containing redundant data and a portion of that candidate control channel data block containing redundancy reduced data) for implementing decoding when station identifier information is unknown. Embodiments of a USII decoder may use a power detection technique for identifying candidate control channel data blocks used in redundancy reduction-based error checking operation.