Abstract:
A method for manufacturing a device (1) is suggested. The device comprises at least one opto-electronic module (1), and the method comprises creating a wafer stack (2) comprising a substrate wafer (PW), and an optics wafer (OW); wherein a multitude of active optical components (E) is mounted on the substrate wafer (PW), and the optics wafer (OW) comprises a multitude of passive optical components (L). Each of the opto-electronic modules (1) comprises at least one of the active optical components (E) and at least one of the passive optical components (L). The optics wafer (OW) can comprise at least one portion, referred to as blocking portion, which is at least substantially non-transparent for at least a specific wavelength range, and at least one other portion, referred to as transparent portion, which is at least substantially non-transparent for at least said specific wavelength range. 11. The opto-electronic module comprises a substrate member; an optics member; at least one active optical component mounted on said substrate member; and at least one passive optical component comprised in said optics member. The optics member (OW) is directly or indirectly fixed to said substrate member (PW). The opto-electronic modules (1) can have an excellent manufacturability while being small in dimension and having a high alignment accuracy.
Abstract:
The optical system comprises a base plate having a first plate side and a second plate side, a light guide element located substantially on said first plate side and a lens element located on said second plate side. The base plate and the light guide element are integrally formed or are distinct parts, and the base plate is at least partially transparent The optical system forms a light path for light passing through said lens element, across said base plate and through said light guide element, and wherein said base plate comprises at least one mechanical guiding element. The method for manufacturing such an optical system comprises providing a wafer comprising a multitude of said base plates.
Abstract:
A replication tool for producing an optical structure comprising an optical element includes a central section having the shape defining a negative of a portion of the optical structure and a vertically aligned central axis; a surrounding section laterally surrounding the central section; and one or more contact standoffs defining a plane referred to as contact plane. In a first azimuthal range, the surrounding portion provides a first compensation surface facing away from the central axis, and in a second azimuthal range, the surrounding portion provides a second compensation surface facing away from the central axis. In any cross-section containing the central axis in the second azimuthal range, a steepness of the second compensation surface is higher than a steepness of the first compensation surface in any cross-section containing the central axis in the first azimuthal range.
Abstract:
A method for manufacturing a device (1) is suggested. The device comprises at least one opto-electronic modul (1), and the method comprises creating a wafer stack (2) comprising a substrate wafer (PW), and an optics wafer (OW); wherein a multitude of active optical components (E) is mounted on the substrate wafer (PW), and the optics wafer (OW) comprises a multitude of passive optical components (L). Each of the opto-electronic modules (1) comprises at least one of the active optical components (E) and at least one of the passive optical components (L). The optics wafer (OW) can comprise at least one portion, referred to as blocking portion, which is at least substantially non-transparent for at least a specific wavelength range, and at least one other portion, referred to as transparent portion, which is at least substantially non-transparent for at least said specific wavelength range. 11. The opto-electronic module comprises a substrate member; an optics member; at least one active optical component mounted on said subtrate member; and at least one passive optical component comprised in said optics member. The optics member (OW) is directly or indirectly fixed to said substrate member (PW). The opto-electronic modules (1) can have an excellent manufacturability while being small in dimension and having a high alignment accuracy.
Abstract:
The wafer-level method for applying N≧2 first elements to a first side of a substrate, wherein the substrate has at the first side a first surface including the steps of providing the substrate, wherein at least N barrier members are present at the first side, and wherein each barrier member is associated with one of the first elements. For each of the first elements, the method includes bringing a first amount of a hardenable material in a flowable state in contact with the first surface, the first amount of hardenable material being associated with the first element; controlling a flow of the first amount of hardenable material on the first surface with the associated barrier member; and hardening the first amount of hardenable material to interconnect the first surface and the respective element.
Abstract:
A flash module comprises an optics portion that includes a base plate, a light guide on a first side of the base plate, and a lens element on a second side of the base plate. A casing is attached to the optics portion and defines an interior region in which the lens element is located. An active light emitting component is mounted within the casing. Sidewalls of the light guide are coated with first and second layers of different materials. The second layer is a coating over the first layer and is substantially non-transparent to light emitted by the active light emitting component. The first layer can provide a predetermined aesthetic appearance and can be selected, for example, to match the color of the exterior surface of a device in which the flash module is to be integrated.
Abstract:
The optical system comprises a base plate having a first plate side and a second plate side, a light guide element located substantially on said first plate side and a lens element located on said second plate side. The base plate and the light guide element are integrally formed or are distinct parts, and the base plate is at least partially transparent The optical system forms a light path for light passing through said lens element, across said base plate and through said light guide element, and wherein said base plate comprises at least one mechanical guiding element. The method for manufacturing such an optical system comprises providing a wafer comprising a multitude of said base plates.