AMMONIA OXIDATION/DECOMPOSITION CATALYST
    5.
    发明申请
    AMMONIA OXIDATION/DECOMPOSITION CATALYST 有权
    氨基氧化/分解催化剂

    公开(公告)号:US20130156687A1

    公开(公告)日:2013-06-20

    申请号:US13819070

    申请日:2010-08-31

    IPC分类号: C01B3/04

    摘要: The present invention provides an ammonia oxidation/decomposition catalyst including a support composed of an oxidizable and reducible metal oxide and a catalytically active metal supported thereon. By bringing the ammonia oxidation/decomposition catalyst including a support composed of an oxidizable and reducible metal oxide and a catalytically active metal supported thereon into contact with ammonia and air at ordinary temperature, the support in a reduced state reacts with oxygen to generate oxidation heat, and the temperature of the catalyst layer is increased in a moment. Once the temperature of the catalyst layer is increased to a temperature at which ammonia and oxygen react with each other, the ammonia oxidation reaction proceeds autonomously after that. The heat generated in this exothermic reaction is used in the course of decomposing ammonia in the presence of the catalytically active metal, thereby producing hydrogen.

    摘要翻译: 本发明提供一种氨氧化/分解催化剂,其包含由可氧化还原性金属氧化物和负载在其上的催化活性金属构成的载体。 通过将包含由可氧化还原性金属氧化物构成的载体和负载有催化活性金属的氨氧化/分解催化剂在常温下与氨和空气接触,还原态的载体与氧气反应产生氧化热, 并且催化剂层的温度暂时增加。 一旦催化剂层的温度升高到氨和氧彼此反应的温度,氨氧化反应就自动进行。 在该放热反应中产生的热在催化活性金属存在下分解氨的过程中使用,从而产生氢。

    AMMONIA OXIDATION/DECOMPOSITION CATALYST
    6.
    发明申请
    AMMONIA OXIDATION/DECOMPOSITION CATALYST 审中-公开
    氨基氧化/分解催化剂

    公开(公告)号:US20130288890A1

    公开(公告)日:2013-10-31

    申请号:US13883302

    申请日:2011-11-09

    摘要: Provided is an ammonia oxidation/decomposition catalyst which can decrease the reduction temperature of a support, which is required for the catalyst to have a property of being activated at room temperature, and also can render a property of being activated at a temperature lower than room temperature. The ammonia oxidation/decomposition catalyst of the present invention is an ammonia oxidation/decomposition catalyst, comprising: a catalyst support composed of a composite oxide of cerium oxide and zirconium oxide; and at least one metal selected from the group consisting of metals of group 6A, group 7A, group 8, and group 1B as a catalytically active metal deposited thereon, characterized in that the molar concentration of zirconium oxide in the catalyst support is from 10 to 90%.

    摘要翻译: 提供了能够降低载体的还原温度的氨氧化/分解催化剂,催化剂具有在室温下被活化的性质,并且还可以使其在低于室温的温度下活化 温度。 本发明的氨氧化/分解催化剂是氨氧化/分解催化剂,包括:由氧化铈和氧化锆的复合氧化物构成的催化剂载体; 和选自6A,7A,8族和1B族金属中的至少一种金属作为沉积在其上的催化活性金属,其特征在于催化剂载体中氧化锆的摩尔浓度为10〜 90%。

    Method for synthesizing ammonia
    7.
    发明授权
    Method for synthesizing ammonia 有权
    合成氨的方法

    公开(公告)号:US08801915B2

    公开(公告)日:2014-08-12

    申请号:US13809677

    申请日:2011-06-03

    IPC分类号: C01C1/02

    摘要: In the ammonia synthesis method, an anode and a cathode are arranged in an electrolyte phase at a predetermined interval; water (H2O) is supplied to an anode zone and light is radiated so that water is decomposed by a photoabsorption reaction to generate protons (H+), electrons (e−), and an oxygen gas (O2); a nitrogen gas (N2 ) is supplied to a cathode zone, and the electrons (e−) generated in the anode zone are allowed to transfer to the cathode zone through a lead, thereby generating N3− in the cathode zone; and ammonia (NH3 ) is synthesized through the reaction between the protons (H+) that have moved toward the cathode zone from the anode zone in the electrolyte phase and N3−.

    摘要翻译: 在氨合成方法中,阳极和阴极以预定间隔排列在电解质相中; 将水(H 2 O)供给到阳极区域,并且照射光,使得水通过光吸收反应分解以产生质子(H +),电子(e-)和氧气(O 2); 向阴极区供给氮气(N2),通过引线使在阳极区域产生的电子(e-)转移到阴极区,从而在阴极区域产生N 3 - 并且通过在电解质相中的阳极区域和N3-之间已经向阴极区移动的质子(H +)之间的反应合成氨(NH 3)。

    Ammonia synthesis apparatus and process
    8.
    发明授权
    Ammonia synthesis apparatus and process 有权
    氨合成装置及工艺

    公开(公告)号:US08597583B2

    公开(公告)日:2013-12-03

    申请号:US12705056

    申请日:2010-02-12

    摘要: An ammonia synthesis apparatus includes: a first gas channel; a second gas channel disposed outside the first gas channel; a third gas channel disposed outside the second gas channel; an air supply unit that supplies air to the second or third gas channel; a water supply unit that supplies water to the first gas channel; and a heat supply unit that supplies heat to the first gas channel. A metal or a metal oxide that reduces water to produce hydrogen is placed in the first gas channel. An ammonia synthesis catalyst is placed in the second gas channel located downstream of the downstream end portion of the first gas channel. The second and third gas channels are at least partially partitioned by an oxygen permeation membrane, or a nitrogen permeation membrane, so that oxygen is supplied to the third gas channel, and nitrogen is supplied to the second gas channel.

    摘要翻译: 氨合成装置包括:第一气体通道; 设置在第一气体通道外侧的第二气体通道; 设置在所述第二气体通道外侧的第三气体通道; 空气供应单元,其向第二或第三气体通道供应空气; 供水单元,其向第一气体通道供水; 以及向第一气体通道供热的供热单元。 减少水以产生氢的金属或金属氧化物被放置在第一气体通道中。 氨合成催化剂被放置在位于第一气体通道的下游端部下游的第二气体通道中。 第二和第三气体通道至少部分地被氧气渗透膜或氮气渗透膜分隔开,使得向第三气体通道供应氧气,并且向第二气体通道供应氮气。

    METHOD FOR SYNTHESIZING AMMONIA
    9.
    发明申请
    METHOD FOR SYNTHESIZING AMMONIA 有权
    合成氨的方法

    公开(公告)号:US20130112568A1

    公开(公告)日:2013-05-09

    申请号:US13809677

    申请日:2011-06-03

    IPC分类号: C01C1/04

    摘要: In the ammonia synthesis method, an anode and a cathode are arranged in an electrolyte phase at a predetermined interval; water (H2O) is supplied to an anode zone and light is radiated so that water is decomposed by a photoabsorption reaction to generate protons (H+), electrons (e), and an oxygen gas (O2); a nitrogen gas (N2) is supplied to a cathode zone, and the electrons (e−) generated in the anode zone are allowed to transfer to the cathode zone through a lead, thereby generating N3− in the cathode zone; and ammonia (NH3) is synthesized through the reaction between the protons (H+) that have moved toward the cathode zone from the anode zone in the electrolyte phase and N3−.

    摘要翻译: 在氨合成方法中,阳极和阴极以预定间隔排列在电解质相中; 将水(H 2 O)供给到阳极区域,并且照射光,使得水通过光吸收反应分解以产生质子(H +),电子(e)和氧气(O 2); 向阴极区供给氮气(N2),通过引线使在阳极区域产生的电子(e-)转移到阴极区,从而在阴极区域产生N 3 - 并且通过在电解质相中的阳极区域和N3-之间已经向阴极区移动的质子(H +)之间的反应合成氨(NH 3)。