Abstract:
A positive resist composition for immersion exposure comprises: (A) a resin capable of increasing its solubility in an alkali developer by an action of an acid, and (B) a compound capable of generating an acid upon irradiation with actinic ray or radiation, wherein the acid satisfies conditions of V≧230 and V/S≦0.93 taking van der Waals volume of the acid as V (Å3), and van der Waals surface area of the acid as S (Å2).
Abstract:
A pattern forming method which uses a positive resist composition comprises: (A) a silicon-free resin capable of increasing its solubility in an alkaline developer under action of an acid; (B) a compound capable of generating an acid upon irradiation with an actinic ray or radiation; (C) a silicon-containing resin having at least one group selected from the group of consisting (X) an alkali-soluble group, (XI) a group capable of decomposing under action of an alkaline developer and increasing solubility of the resin (C) in an alkaline developer, and (XII) a group capable of decomposing under action of an acid and increasing solubility of the resin (C) in an alkaline developer, and (D) a solvent, the method comprising: (i) a step of applying the positive resist composition to a substrate to form a resist coating, (ii) a step of exposing the resist coating to light via an immersion liquid, (iii) a step of removing the immersion liquid remaining on the resist coating, (iv) a step of heating the resist coating, and (v) a step of developing the resist coating.
Abstract:
A positive resist composition comprising: (A) a resin which comes to have an enhanced solubility in an alkaline developing solution by an action of an acid; (B) a compound which generates an acid upon irradiation with actinic rays or a radiation; (C) a fluorine-containing compound containing at least one group selected from the groups (x) to (z); and (F) a solvent, and a method of pattern formation with the composition: (x) an alkali-soluble group; (y) a group which decomposes by an action of an alkaline developing solution to enhance a solubility in an alkaline developing solution; and (z) a group which decomposes by an action of an acid.
Abstract:
A positive type resist composition for use in liquid immersion exposure comprises: (A) a resin having a monocyclic or polycyclic cycloaliphatic hydrocarbon structure, the resin increasing its solubility in an alkali developer by an action of acid; (B) a compound generating acid upon irradiation with one of an actinic ray and a radiation; (C) an alkali soluble compound having an alkyl group of 5 or more carbon atoms; and (D) a solvent.
Abstract:
A pattern forming method which uses a positive resist composition comprises: (A) a fluorine-free resin capable of increasing its solubility in an alkaline developer under action of an acid; (B) a compound capable of generating an acid upon irradiation with an actinic ray or radiation; (C) a fluorine-containing resin having at least one group selected from the group consisting of (X) an alkali-soluble group, (XI) a group capable of decomposing under action of an alkali developer and increasing solubility of the resin (C) in an alkaline developer and (XII) a group capable of decomposing under action of an acid and increasing solubility of the resin (C) in an alkaline developer; and (D) a solvent, the method comprising: (i) a step of applying the positive resist composition to a substrate to form a resist coating; (ii) a step of exposing the resist coating to light via an immersion liquid; (iii) a step of removing the immersion liquid remaining on the resist coating; (iv) a step of heating the resist coating; and (v) a step of developing the resist coating.
Abstract:
A production method of an insulating film forming composition includes a process of filtering a composition through a filter made of polyethylene or nylon.
Abstract:
A composition includes at least one kind polymer, each of which includes a repeating unit(s) derived from at least one compound selected from the group consisting of compounds represented by the following formulas (I) to (IV): R4Si (I) R3Si—(X—SiR2)m—X—Si—R3 (II) *—(X—SiR2)n—* (III) m.RSi(O0.5)3 (IV) wherein the symbols in the formulas are defined in the specification.
Abstract:
An object of the invention is to provide a composition for forming an insulating film which can form an insulating film having a lowered dielectric constant using a hole forming agent, wherein the generation of spaces (voids) in which holes are connected to one another is prevented.The above problem is solved by forming an insulating film using a composition for forming an insulating film, characterized by comprising: (A) a polyphenylene, (B) a styrene polymer, and (C) a block copolymer or a graft copolymer comprising a unit having an affinity to said polyphenylene (A) and a unit having an affinity to said styrene polymer (B).