Abstract:
The drive signal for a switchable heating transformer of an electronic ballast should be capable of being produced in a simple manner. For this purpose, the invention provides for an oscillating inverter voltage, which has a variable inverter frequency, to be tapped off, for example, at the half-bridge center point. The inverter frequency is then preferably converted into a drive signal by a charge pump (C1, C2, D1, D2). As a function of this drive signal, the heating transformer (HT) is switched. Synchronization with externally controlled sequence control of the electronic ballast is therefore also possible.
Abstract:
A method for operating at least one light source, in which an input voltage (Uin) is converted into an AC output voltage, the AC output voltage providing a power for operating at least one light source (5), wherein the frequency of the output voltage is frequency-modulated with a triangular modulation signal if the input voltage (Uin) is a DC voltage.
Abstract:
The present invention relates to a circuit arrangement for operating at least one electric lamp and at least one LED including: an inverter having a bridge circuit having at least one first bridge transistor and one second bridge transistor arranged in series with one another, a center point of the bridge circuit being defined between the first and second bridge transistors; a lamp supply unit for supplying the electric lamp with energy from the bridge circuit, which includes a supply line with an inductance, via which the center point (M) of the bridge circuit is coupled to a first connection for the electric lamp; the lamp supply unit including an LED supply unit, which is designed to supply the at least one LED with energy. Moreover, it relates to an operating method for at least one electric lamp and at least one LED using such a circuit arrangement.
Abstract:
The present invention relates to an electronic ballast for discharge lamps (LA) which have preheatable electrodes (E1, E2). The electronic ballast has a measuring apparatus (M), which is designed to measure, during the preheating process, a variable, which is correlated with the electrode temperature increased by the preheating, of at least one of the electrodes (E1, E2) of a connected discharge lamp (LA), and a control apparatus (C), which is designed to match the electrode temperature, during the preheating process, in response to the measurement by adjusting an operational parameter of the electronic ballast. Furthermore, the electronic ballast is designed to detect cross discharges or a sufficient operating temperature of one of the electrodes (E1, E2) and possibly to ignite the discharge.
Abstract:
The drive signal for a switchable heating transformer of an electronic ballast should be capable of being produced in a simple manner. For this purpose, the invention provides for an oscillating inverter voltage, which has a variable inverter frequency, to be tapped off, for example, at the half-bridge center point. The inverter frequency is then preferably converted into a drive signal by a charge pump (C1, C2, D1, D2). As a function of this drive signal, the heating transformer (HT) is switched. Synchronization with externally controlled sequence control of the electronic ballast is therefore also possible.
Abstract:
In various embodiments, a circuit for driving a fluorescent lamp is provided. The circuit may include a half bridge including a first switch and a second switch; a drive unit for driving the first switch and the second switch, it being possible for a predetermined state to be established using the drive unit, and it being possible for the driving of the first and the second switch to be modulated as a result of the predetermined state using the drive unit.
Abstract:
In various embodiments, a circuit for driving a fluorescent lamp is provided. The circuit may include a half bridge including a first switch and a second switch; a drive unit for driving the first switch and the second switch, it being possible for a predetermined state to be established using the drive unit, and it being possible for the driving of the first and the second switch to be modulated as a result of the predetermined state using the drive unit.
Abstract:
The present invention relates to an electronic ballast for discharge lamps, for example low-pressure discharge lamps, having a converter having a switching element and a two-part lamp inductor which is connected upstream and downstream of the discharge lamp. An electronic ballast according to the invention has a smoothing circuit which reduces voltage jumps caused by switching operations in the converter at the lamp terminals.
Abstract:
The present invention relates to an electronic ballast for discharge lamps, for example low-pressure discharge lamps, having a converter having a switching element and a two-part lamp inductor which is connected upstream and downstream of the discharge lamp. An electronic ballast according to the invention has a smoothing circuit which reduces voltage jumps caused by switching operations in the converter at the lamp terminals.
Abstract:
The present invention relates to an electronic ballast for discharge lamps (LA) which have preheatable electrodes (E1, E2). The electronic ballast has a measuring apparatus (M), which is designed to measure, during the preheating process, a variable, which is correlated with the electrode temperature increased by the preheating, of at least one of the electrodes (E1, E2) of a connected discharge lamp (LA), and a control apparatus (C), which is designed to match the electrode temperature, during the preheating process, in response to the measurement by adjusting an operational parameter of the electronic ballast. Furthermore, the electronic ballast is designed to detect cross discharges or a sufficient operating temperature of one of the electrodes (E1, E2) and possibly to ignite the discharge.