Abstract:
An assembly comprises an AC (alternating current) housing connection block and a plurality of inserts seated in the AC housing connection block, wherein for each of the inserts, an interface between the insert and the housing is continuous. A method includes inserting a plurality of inserts into a mold; and molding an AC (alternating current) housing connection block.
Abstract:
A diode pack housing for a rotating rectifier assembly can include a body having an interior surface defining an interior cavity open on a first end and configured to contain a diode pack and a plurality of bus bar channels defined axially on or in the inner surface in the interior cavity. The plurality of bus bar channels can be five or less bus bar channels.
Abstract:
A rotor pack for a generator has an exciter rotor rotating with a shaft. A rectifier assembly is in electric communication with the exciter rotor to receive AC current and rectify the AC current into a DC voltage. Positive and negative busses extend from the rectifier assembly to a negative rail and a positive rail on a connection assembly. The negative rail is in contact with the shaft to provide a ground connection. The negative and positive rails are formed of a metal. The negative and positive rails are connected to a main field winding. A high speed generator is also disclosed.
Abstract:
A method of installing the terminal block assembly onto a generator includes the step of providing a terminal block with multiple terminal studs. Protrusions that are integral with the terminal block are aligned with corresponding bores in a generator housing. The terminal block is mounted on the generator housing with the protrusions received in the bores. A terminal lead assembly is inserted through the protrusion, and a terminal pad of the terminal lead assembly is arranged over the terminal stud. A terminal lug is fastened to the terminal stud. A terminal cover is secured to the terminal block over the terminal with a boss of the terminal block received in a corresponding recess of the terminal cover.
Abstract:
An assembly comprises a resistor plate for a rotating rectifier assembly (RRA). A shaft bore is defined through the resistor plate for passage of a shaft of an electrical machine, and the resistor plate defines a main annular body around the shaft bore. A first protrusion extends radially outward from the main annular body, so that a first pin bore extends through the first protrusion. At least one contact band is seated in a the pin bore of the resistor plate for mounting a direct current (DC) pin to the resistor plate.
Abstract:
A rotor having multiple poles is provided and includes at each pole an end winding support forming a channel, a bus bar disposed in the channel and edge-wound coils disposed to extend around the end-winding support and the bus bar. The edge-wound coils are stacked radially and include an inner diameter coil routed to an adjacent pole and brazed to an inner diameter coil of the adjacent pole and an outer diameter coil brazed to the bus bar.
Abstract:
A rotor having multiple poles is provided and includes at each pole an end winding support forming a channel, a bus bar disposed in the channel and edge-wound coils disposed to extend around the end-winding support and the bus bar. The edge-wound coils are stacked radially and include an inner diameter coil routed to an adjacent pole and brazed to an inner diameter coil of the adjacent pole and an outer diameter coil brazed to the bus bar.
Abstract:
A resistor pack assembly including an anti-rotation housing. The anti-rotation housing includes a first surface, a second surface opposite the first surface, one or more anti-rotation lugs extending away from the first surface, and an internal cavity extending from the second surface into the anti-rotation housing towards the first surface. The resistor pack assembly also including a positive rail located at least partially within the internal cavity, a negative rail having an inner circular face and an outer circular face located radially outward from the inner circular face, and an insulator ring is interposed between the second surface of the anti-rotation housing and the outer circular face of the negative rail.
Abstract:
A terminal assembly includes a terminal block of a dielectric material defining a plurality of bores therethrough. A respective terminal contact of an electrically conductive material is seated in each of the respective bores. The terminal contact defines a longitudinal axis therethrough with a terminal bore defined through the terminal contact along the longitudinal axis. A divider wall separates the terminal bore into a solder cup for a lead wire on an interior side of the terminal bore, and a lug receptacle on an exterior side of the terminal bore.
Abstract:
A roller bearing outer race of a hydraulic unit having a body having a first part and a second part. The first part comprising a central section having an exterior curved portion, an exterior angled portion, and a circular inner portion, wherein a central aperture defining a first axis passes through the circular inner portion of the central section, a first arm extending from a first side of the central section, and a second arm extending from a second side of the central section. A race within the circular inner portion of the central section, the race defined by a first race wall and a second race wall and wherein a thickness of the first arm and the second arm is about 0.450 inches (1.143 cm) and a radial distance of an exterior surface of the exterior curved portion from the first axis is about 0.657 inches (1.669 cm).