Abstract:
Systems and methods for a robust underwater vehicle are described herein. A robust underwater vehicle may include a force-limiting coupler connecting an actuation system to an actuation fin. The force-limiting coupler may be configured to break away from the actuation system upon receiving a threshold force. The robust underwater vehicle may also comprise hull sections connected by a threaded turnbuckle. Carbon-fiber axial strength members may mate with the threaded turnbuckle to pull the hull sections together to a specified preload tension. The robust underwater vehicle may also include a blazed sonar array protected by a carbon fiber bow including a plurality of slits. The plurality of slits may provide significant protection to the sonar array while simultaneously allowing one or more transducers to transmit sonar signals in a two-dimensional plane.
Abstract:
Systems and methods are disclosed herein for a pressure tolerant energy system. The pressure tolerant energy system may comprise a pressure tolerant cavity and an energy system enclosed in the pressure tolerant cavity configured to provide electrical power to the vehicle. The energy system may include one or more battery cells and a pressure tolerant, programmable management circuit. The pressure tolerant cavity may be filled with an electrically-inert liquid, such as mineral oil. In some embodiments, the electrically-inert liquid may be kept at a positive pressure relative to a pressure external to the pressure tolerant cavity. The energy system may further comprise a pressure venting system configured to maintain the pressure inside the pressure tolerant cavity within a range of pressures. The pressure tolerant cavity may be sealed to prevent water ingress.
Abstract:
A pressure tolerant energy system may comprise a pressure tolerant cavity and an energy system enclosed in the pressure tolerant cavity configured to provide electrical power to the vehicle. The energy system may include one or more battery cells and a pressure tolerant, programmable management circuit. The pressure tolerant cavity may be filled with an electrically-inert liquid, such as mineral oil. In some embodiments, the electrically-inert liquid may be kept at a positive pressure relative to a pressure external to the pressure tolerant cavity. The energy system may further comprise a pressure venting system configured to maintain the pressure inside the pressure tolerant cavity within a range of pressures. The pressure tolerant cavity may be sealed to prevent water ingress.
Abstract:
Systems and methods are disclosed herein for a pressure tolerant energy system. The pressure tolerant energy system may comprise a pressure tolerant cavity and an energy system enclosed in the pressure tolerant cavity configured to provide electrical power to the vehicle. The energy system may include one or more battery cells and a pressure tolerant, programmable management circuit. The pressure tolerant cavity may be filled with an electrically-inert liquid, such as mineral oil. In some embodiments, the electrically-inert liquid may be kept at a positive pressure relative to a pressure external to the pressure tolerant cavity. The energy system may further comprise a pressure venting system configured to maintain the pressure inside the pressure tolerant cavity within a range of pressures. The pressure tolerant cavity may be sealed to prevent water ingress.
Abstract:
Systems and methods are disclosed herein for a pressure tolerant energy system. The pressure tolerant energy system may comprise a pressure tolerant cavity and an energy system enclosed in the pressure tolerant cavity configured to provide electrical power to the vehicle. The energy system may include one or more battery cells and a pressure tolerant, programmable management circuit. The pressure tolerant cavity may be filled with an electrically-inert liquid, such as mineral oil. In some embodiments, the electrically-inert liquid may be kept at a positive pressure relative to a pressure external to the pressure tolerant cavity. The energy system may further comprise a pressure venting system configured to maintain the pressure inside the pressure tolerant cavity within a range of pressures. The pressure tolerant cavity may be sealed to prevent water ingress.
Abstract:
Systems and methods are disclosed herein for a pressure tolerant energy system. The pressure tolerant energy system may comprise a pressure tolerant cavity and an energy system enclosed in the pressure tolerant cavity configured to provide electrical power to the vehicle. The energy system may include one or more battery cells and a pressure tolerant, programmable management circuit. The pressure tolerant cavity may be filled with an electrically-inert liquid, such as mineral oil. In some embodiments, the electrically-inert liquid may be kept at a positive pressure relative to a pressure external to the pressure tolerant cavity. The energy system may further comprise a pressure venting system configured to maintain the pressure inside the pressure tolerant cavity within a range of pressures. The pressure tolerant cavity may be sealed to prevent water ingress.
Abstract:
Systems and methods for adding buoyancy to an object are described herein. A buoyant material may be enclosed inside a flexible container, heated, and inserted into a free flooded cavity inside the object. The flexible container may then be formed to the shape of the cavity. After the flexible container is formed to the shape of the cavity, the flexible container may be cooled. The flexible container may hold a pre-determined amount of the syntactic material that provides a fixed amount of buoyancy. According to another aspect, systems and methods for packing a vehicle are described herein. In some embodiments, a buoyant material may be molded into the shape of a hull of a vehicle, and a plurality of cutouts may be extracted from the buoyant material which are specifically designed to incorporate one or more instruments.
Abstract:
Systems and methods are disclosed herein for a pressure tolerant energy system. The pressure tolerant energy system may comprise a pressure tolerant cavity and an energy system enclosed in the pressure tolerant cavity configured to provide electrical power to the vehicle. The energy system may include one or more battery cells and a pressure tolerant, programmable management circuit. The pressure tolerant cavity may be filled with an electrically-inert liquid, such as mineral oil. In some embodiments, the electrically-inert liquid may be kept at a positive pressure relative to a pressure external to the pressure tolerant cavity. The energy system may further comprise a pressure venting system configured to maintain the pressure inside the pressure tolerant cavity within a range of pressures. The pressure tolerant cavity may be sealed to prevent water ingress.
Abstract:
Systems and methods for a robust underwater vehicle are described herein. A robust underwater vehicle may include a force-limiting coupler connecting an actuation system to an actuation fin. The force-limiting coupler may be configured to break away from the actuation system upon receiving a threshold force. The robust underwater vehicle may also comprise hull sections connected by a threaded turnbuckle. Carbon-fiber axial strength members may mate with the threaded turnbuckle to pull the hull sections together to a specified preload tension. The robust underwater vehicle may also include a blazed sonar array protected by a carbon fiber bow including a plurality of slits. The plurality of slits may provide significant protection to the sonar array while simultaneously allowing one or more transducers to transmit sonar signals in a two-dimensional plane.
Abstract:
Systems and methods for adding buoyancy to an object are described herein. A buoyant material may be enclosed inside a flexible container, heated, and inserted into a free flooded cavity inside the object. The flexible container may then be formed to the shape of the cavity. After the flexible container is formed to the shape of the cavity, the flexible container may be cooled. The flexible container may hold a pre-determined amount of the syntactic material that provides a fixed amount of buoyancy. According to another aspect, systems and methods for packing a vehicle are described herein. In some embodiments, a buoyant material may be molded into the shape of a hull of a vehicle, and a plurality of cutouts may be extracted from the buoyant material which are specifically designed to incorporate one or more instruments.