Abstract:
A data processing method including receiving a data flow sent by an encoder side, where the data flow is a bit stream on which interleaving encoding is used, the data flow includes synchronization information, and the synchronization information is distributed in the data flow based on a first permutation interval, obtaining, from the data flow, first data information based on a first value interval and a first value length, where the first value interval is equal to the first permutation interval, and a difference between the first value length and a length of the synchronization information is less than or equal to a preset error value, and when a similarity between the first data information and the synchronization information exceeds a preset similarity threshold, performing de-interleaving on the data flow based on a start location of the first data information.
Abstract:
Embodiments of the present invention provide a line card, an optical module, and an optical network device. The optical module includes at least one electrical interface and at least one optical interface. The wavelength division multiplexer/demultiplexer includes a first interface and a second interface. The panel is disposed on an edge of the mainboard. The electrical interface is electrically connected to the mainboard. The optical interface faces a direction that is from the edge of the mainboard to an interior of the mainboard and that is parallel to the mainboard, and the optical interface is connected to the first interface. The wavelength division multiplexer/demultiplexer is disposed on the mainboard, the second interface is configured to connect to a feeder fiber, and the feeder fiber is configured to connect an optical network device at a sending end and an optical network device at a receiving end.
Abstract:
Embodiments of the present invention provide a line card, an optical module, and an optical network device. The optical module includes at least one electrical interface and at least one optical interface. The wavelength division multiplexer/demultiplexer includes a first interface and a second interface. The panel is disposed on an edge of the mainboard. The electrical interface is electrically connected to the mainboard. The optical interface faces a direction that is from the edge of the mainboard to an interior of the mainboard and that is parallel to the mainboard, and the optical interface is connected to the first interface. The wavelength division multiplexer/demultiplexer is disposed on the mainboard, the second interface is configured to connect to a feeder fiber, and the feeder fiber is configured to connect an optical network device at a sending end and an optical network device at a receiving end.
Abstract:
The present disclosure relates to message transmission methods in a PON system. One example method includes sending, by an optical line terminal (OLT), a first message to an unregistered optical network unit (ONU), where the first message includes at least one piece of indication message, and one piece of indication message of the at least one piece of indication message indicates a first power range and a first time range associated with the first power range, and receiving, by the OLT in the first time range, a registration message sent by the ONU, where a downstream receive power of the ONU falls within the first power range.
Abstract:
A data encoding method and apparatus and a data decoding method and apparatus in a passive optical network (PON) system include collecting N data blocks at a physical coding sublayer and generating valid data by combining the N data blocks, generating a payload, where the payload includes the valid data, performing FEC encoding on the payload to generate a check part, and generating a codeword structure. The synchronization header may be located at the head or the tail of the codeword structure.
Abstract:
The present invention discloses a passive optical network communications method: reporting, by an optical network unit, ONU, a calibration record of the ONU, where the calibration record includes an ID of a calibrated wavelength channel; sending a first message to the ONU when the OLT determines, according to the calibration record, that a target wavelength channel ID corresponding to a target wavelength channel to which the ONU needs to switch is not in the calibration record, where the first message includes a forced wavelength switching flag; and instructing the ONU to switch to the calibrated target wavelength channel. In this way, the ONU can implement wavelength switching quickly after calibrating a new wavelength channel so as to perform data communication over the calibrated new wavelength channel.
Abstract:
A data processing method including receiving a data flow sent by an encoder side, where the data flow is a bit stream on which interleaving encoding is used, the data flow includes synchronization information, and the synchronization information is distributed in the data flow based on a first permutation interval, obtaining, from the data flow, first data information based on a first value interval and a first value length, where the first value interval is equal to the first permutation interval, and a difference between the first value length and a length of the synchronization information is less than or equal to a preset error value, and when a similarity between the first data information and the synchronization information exceeds a preset similarity threshold, performing de-interleaving on the data flow based on a start location of the first data information.
Abstract:
This application discloses a remote desktop system, including a primary virtual machine, a plurality of secondary virtual machines, a primary terminal configured to log in to the primary virtual machine, and a secondary terminal configured to log in to a secondary virtual machine. When a user of the primary virtual machine needs to share image data of the primary virtual machine with a user of the secondary terminal for viewing, the primary virtual machine sends the image data to the primary terminal, and then the primary terminal shares the image data with the secondary terminal. This reduces data transmission pressure on a communications network between a virtual machine center and a terminal center.
Abstract:
This application provides a self-seeding fiber laser, including: an arrayed waveguide grating; a gain medium, coupled to one branch port of the arrayed waveguide grating; a Faraday rotator mirror, coupled to a common port of the arrayed waveguide grating, and configured to reflect a part of optical signals transmitted by the gain medium and form injection light returning to the gain medium; where the gain medium, the arrayed waveguide grating, and the Faraday rotator mirror form a laser resonator, and the arrayed waveguide grating is configured to perform wavelength selection in the laser resonator; and a compensation apparatus, coupled to the gain medium and configured to provide a compensation current for the gain medium selectively according to power of the injection light.
Abstract:
An upstream resource grant method, a device, a passive optical network, and a computer-readable storage medium are provided. The upstream resource grant method includes: obtaining, by an optical line terminal, an upstream grant message on which transformation processing has been performed, wherein a transformation parameter used for the transformation processing includes a physical identity of an optical network unit (ONU); and sending, by the optical line terminal, the upstream grant message on which the transformation processing has been performed, wherein the upstream grant message carries an upstream resource grant indication of the optical network unit, and the upstream resource grant indication indicates an upstream resource granted to the optical network unit. According to this application, an occurrence probability of a rogue ONU phenomenon is reduced, thereby improving service running stability of a PON system.