Abstract:
Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a first region of semiconductor material having a first conductivity type and a first dopant concentration, a second region of semiconductor material having a second conductivity type overlying the first region, a drift region of semiconductor material having the first conductivity type overlying the second region, and a drain region of semiconductor material having the first conductivity type. The drift region and the drain region are electrically connected, with at least a portion of the drift region residing between the drain region and the second region, and at least a portion of the second region residing between that drift region and the first region. In one or more exemplary embodiments, the first region abuts an underlying insulating layer of dielectric material.
Abstract:
Instability and drift sometimes observed in bipolar transistors, having a portion of the base extending to the transistor surface between the emitter and base contact, can be reduced or eliminated by providing a further doped region of the same conductivity type as the emitter at the transistor surface between the emitter and the base contact. The further region is desirably more heavily doped than the base region at the surface and less heavily doped than the adjacent emitter. In another embodiment, a still or yet further region of the same conductivity type as the emitter is provided either between the further region and the emitter or laterally within the emitter. The still or yet further region is desirably more heavily doped than the further region. Such further regions shield the near surface base region from trapped charge that may be present in dielectric layers or interfaces overlying the transistor surface.
Abstract:
Adverse tradeoff between BVDSS and Rdson in LDMOS devices employing a drift space adjacent the drain, is avoided by providing a lightly doped region of a first conductivity type (CT) separating the first CT drift space from an opposite CT WELL region in which the first CT source is located, and a further region of the opposite CT (e.g., formed by an angled implant) extending through part of the WELL region under an edge of the gate located near a boundary of the WELL region into the lightly doped region, and a shallow still further region of the first CT Ohmically coupled to the source and ending near the gate edge whereby the effective channel length in the further region is reduced to near zero. Substantial improvement in BVDSS and/or Rdson can be obtained without degrading the other or significant adverse affect on other device properties.
Abstract:
Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure includes a first vertical drift region of semiconductor material, a second vertical drift region of semiconductor material, and a buried lateral drift region of semiconductor material that abuts the vertical drift regions. In one or more embodiments, the vertical drift regions and buried lateral drift region have the same conductivity type, wherein a body region of the opposite conductivity type overlies the buried lateral drift region between the vertical drift regions.
Abstract:
Bipolar transistors and methods for fabricating bipolar transistors are provided. In one embodiment, the method includes the step or process of providing a substrate having therein a semiconductor base region of a first conductivity type and first doping density proximate an upper substrate surface. A multilevel collector structure of a second opposite conductivity type is formed in the base region. The multilevel collector includes a first collector part extending to a collector contact, a second collector part Ohmically coupled to the first collector part underlying the upper substrate surface by a first depth, a third collector part laterally spaced apart from the second collector part and underlying the upper substrate surface by a second depth and having a first vertical thickness, and a fourth collector part Ohmically coupling the second and third collector parts and having a second vertical thickness different than the first vertical thickness.
Abstract:
Embodiments for forming improved bipolar transistors are provided, manufacturable by a CMOS IC process. The improved transistor comprises an emitter having first and second portions of different depths, a base underlying the emitter having a central portion of a first base width underlying the first portion of the emitter, a peripheral portion having a second base width larger than the first base width partly underlying the second portion of the emitter, and a transition zone of a third base width and lateral extent lying laterally between the first and second portions of the base, and a collector underlying the base. The gain of the transistor is larger than a conventional bipolar transistor made using the same CMOS process. By adjusting the lateral extent of the transition zone, the properties of the improved transistor can be tailored to suit different applications without modifying the underlying CMOS IC process.
Abstract:
Zener diode structures and related fabrication methods and semiconductor devices are provided. An exemplary semiconductor device includes first and second Zener diode structures. The first Zener diode structure includes a first region, a second region that is adjacent to the first region, and a third region adjacent to the first region and the second region to provide a junction that is configured to influence a first reverse breakdown voltage of a junction between the first region and the second region. The second Zener diode structure includes a fourth region, a fifth region that is adjacent to the fourth region, and a sixth region adjacent to the fourth region and the fifth region to provide a junction configured to influence a second reverse breakdown voltage of a junction between the fourth region and the fifth region, wherein the second reverse breakdown voltage and the first reverse breakdown voltage are different.