摘要:
A scanning electron microscope capable of properly determining a step of a step pattern formed on a sample regardless of combination of material of a groove of the step pattern and material of a projection of the step pattern, the scanning electron microscope includes a beam source, a detection unit having a first detection unit that detects a secondary electron emitted from the sample at an angle between an optical axis direction of the primary electron beam which is equal to or less than a predetermined value, and a second detection unit that detects a secondary electron emitted from the sample at an angle between the optical axis direction of the primary electron beam which is greater than the predetermined value, and a processing unit to obtain information on the step pattern using the information on a ratio between signals outputted from the first and the second detection unit.
摘要:
In order to allow detecting backscattered electrons (BSEs) generated from the bottom of a hole for determining whether a hole with a super high aspect ratio is opened or for inspecting and measuring the ratio of the top diameter to the bottom diameter of a hole, which are typified in 3D-NAND processes of opening a hole, a primary electron beam accelerated at a high accelerating voltage is applied to a sample. Backscattered electrons (BSEs) at a low angle (e.g. a zenith angle of five degrees or more) are detected. Thus, the bottom of a hole is observed using “penetrating BSEs” having been emitted from the bottom of the hole and penetrated the side wall. Using the characteristics in which a penetrating distance is relatively prolonged through a deep hole and the amount of penetrating BSEs is decreased to cause a dark image, a calibration curve expressing the relationship between a hole depth and the brightness is given to measure the hole depth.
摘要:
A defect inspection method comprising: picking up an image of a subject under inspection to thereby acquire an inspection image; extracting multiple templates corresponding to multiple regions, respectively from design data of the subject under inspection; finding a first misregistration amount between the inspection image and the design data using a first template as any one template selected from among the plural templates; finding a second misregistration amount between the inspection image and the design data using a second template other than the first template, the second template being selected from among the plural templates, and the first misregistration-amount; and converting the design data, misregistration thereof being corrected using the first misregistration-amount, and the second misregistration-amount, into a design data image, and comparing the design data image with the inspection image to thereby detect a defect of the subject under inspection.