Abstract:
A photocurable resin composition which hardly causes leakage and is easily formed into a desired shape and an image display device using this photocurable resin composition are provided. Namely, a photocurable resin composition comprises a compound (A) having a photopolymerizable functional group and an oil gelling agent (B), is provided. Also, an image display device having a laminate structure including an image display unit having an image display part, a transparent protective plate, and a resin layer existent between the image display unit and the transparent protective plate, wherein the resin layer is a cured material of the above-described photocurable resin composition, is provided.
Abstract:
Provided are: an organic electronic material which can be easily multilayered and that can be used in substrates, such as resin, that cannot be processed at high temperatures; an ink composition containing the same; an organic thin film formed using said organic electronic material or said ink composition; and an organic electronic element and an organic EL element that are formed using said organic thin film and that have a superior luminous efficacy and emission lifespan than conventional elements. Specifically, provided are: an organic electronic material that is characterized by containing an oligomer or a polymer having a structure that branches into three or more directions and has at least one polymerizable substituent; an ink composition containing said organic electronic material; and an organic thin film prepared using the aforementioned organic electronic material. Further, provided are an organic electronic element and an organic electroluminescent element containing said organic thin film.
Abstract:
Provided are: an organic electronic material which can be easily multilayered and that can be used in substrates, such as resin, that cannot be processed at high temperatures; an ink composition containing the same; an organic thin film formed using said organic electronic material or said ink composition; and an organic electronic element and an organic EL element that are formed using said organic thin film and that have a superior luminous efficacy and emission lifespan than conventional elements. Specifically, provided are: an organic electronic material that is characterized by containing an oligomer or a polymer having a structure that branches into three or more directions and has at least one polymerizable substituent; an ink composition containing said organic electronic material; and an organic thin film prepared using the aforementioned organic electronic material. Further, provided are an organic electronic element and an organic electroluminescent element containing said organic thin film.
Abstract:
Disclosed is a polishing agent comprising: water; tetravalent metal hydroxide particles; and an additive, wherein the additive contains at least one of a cationic polymer and a cationic polysaccharide. The present invention can provide a polishing agent which is capable of polishing an insulating film at a high speed with less polishing flaws, and having a high polishing rate ratio of a silicon oxide film and a stopper film, in the CMP technology of flattening insulating film. The present invention can also provide a polishing agent set for storing the polishing agent, and a method for polishing a substrate using this polishing agent.
Abstract:
A photocurable resin composition which hardly causes leakage and is easily formed into a desired shape and an image display device using this photocurable resin composition are provided. Namely, a photocurable resin composition comprises a compound (A) having a photopolymerizable functional group and an oil gelling agent (B), is provided. Also, an image display device having a laminate structure including an image display unit having an image display part, a transparent protective plate, and a resin layer existent between the image display unit and the transparent protective plate, wherein the resin layer is a cured material of the above-described photocurable resin composition, is provided.
Abstract:
A photocurable resin composition which hardly causes leakage and is easily formed into a desired shape and an image display device using this photocurable resin composition are provided.Namely, a photocurable resin composition comprises a compound (A) having a photopolymerizable functional group and an oil gelling agent (B), is provided. Also, an image display device having a laminate structure including an image display unit having an image display part, a transparent protective plate, and a resin layer existent between the image display unit and the transparent protective plate, wherein the resin layer is a cured material of the above-described photocurable resin composition, is provided.
Abstract:
Disclosed is a polishing agent comprising: water; tetravalent metal hydroxide particles; and an additive, wherein the additive contains at least one of a cationic polymer and a cationic polysaccharide. The present invention can provide a polishing agent which is capable of polishing an insulating film at a high speed with less polishing flaws, and having a high polishing rate ratio of a silicon oxide film and a stopper film, in the CMP technology of flattening insulating film. The present invention can also provide a polishing agent set for storing the polishing agent, and a method for polishing a substrate using this polishing agent.
Abstract:
Disclosed is a polishing agent comprising: water; tetravalent metal hydroxide particles; and an additive, wherein the additive contains at least one of a cationic polymer and a cationic polysaccharide. The present invention can provide a polishing agent which is capable of polishing an insulating film at a high speed with less polishing flaws, and having a high polishing rate ratio of a silicon oxide film and a stopper film, in the CMP technology of flattening insulating film. The present invention can also provide a polishing agent set for storing the polishing agent, and a method for polishing a substrate using this polishing agent.