Abstract:
A distributed emergency building lighting system senses the presence or absence of AC power at the input of a switch controlling lighting in a designated area or an input stimulus such as an alarm to provide low-level marking for visual delineation of the path of egress or lighting of a predetermined designated area by illuminating an EL panel in accordance with code requirements. Self-diagnostic testing verifies operational conditions of the battery and illumination circuit to ensure code compliance.
Abstract:
A path way marking and lighting system utilizes continuous electroluminescent strips of indeterminate length to provide an uninterrupted illuminated path to a target destination such as an egress exit. Powering means responsive to an activation stimulus means are provided to illuminate the electroluminescent strip. Means are provided for self diagnostic testing to carry out one or more sub-system tests to detect system operation within predetermined operating parameters and means provide an alerting indicator in response to a sub-system test detecting a system operation failure.
Abstract:
A power supply is provided for illuminating an electro-luminescent lamp with a constant current and frequency drive signal having a predetermined limiting voltage level for compensating changes in the electro-luminescent lamp characteristics. The power supply operates from an AC or DC input voltage power source and includes an electronic ground fault current interrupter circuit means with remote reset capability to provide protection for the power supply and against user injury. An auto line AC voltage selection circuit senses and selects the proper voltage operating configuration without operator intervention. The status of an LED in conjunction with the status of the electro-luminescent lamp is used as an internal diagnostic aid to assist a user in isolating fault conditions. External signals from a lighting control panel are coupled via an input control circuit to the power supply to provide special lighting effects.
Abstract:
A self-luminous base lamp material for use in construction of a flat flexible fluorescent lamp is disclosed. A layer of fluorescent particles is carried between a rear electrode and front conductor electrode arranged in a parallel plate or split-electrode operative configuration. The fluorescent particles emit light upon excitation by an ultraviolet light source carried between the electrodes in response to energy applied to the electrodes. Inert gas carried in a glass microsphere functions as the ultraviolet source in one embodiment.
Abstract:
A power supply or inverter circuit is provided for regulating power to electroluminescent lamps over a range of lamp sizes. The power supply may have an AC and/or DC input and includes at least one switch having a power input to be coupled to an electrical power source, a control input, and an output to be coupled to an electroluminescent lamp for being switched on and off to generate a drive signal to the lamp having a predetermined constant frequency and current level that is selectable over a range of frequency and current levels. A constant current mode controller has a control output coupled to the control input of the switch for turning the switch on and off so as to maintain a constant current level and frequency of the drive signal to the electroluminescent lamp substantially over its operating life. The voltage applied to the lamp is allowed to increase to a predetermined voltage limiting value in order to provide compensation due to aging of the lamp.
Abstract:
Continuous manufacturing of EL lamp laminate material comprising a front substrate made up of an organic binder phosphor particulate layer coated on an ITO/PET substrate with a rear substrate made up of a barium titanate layer coated on an aluminum foil polyester film laminate is described. The resultant EL lamp laminate is coiled and stored on a take-up reel for subsequent use as an EL lamp having a transparent ITO front electrode and aluminum foil rear electrode. Large surface illumination area, split-electrode and parallel plate EL lamps made from the EL lamp laminate material are also described.
Abstract:
An electroluminescent panel lamp being of either a split-electrode or parallel plate type is disclosed wherein the lamp consists of a main body having an electroluminescent layer between first and second conductive layers. An integral electrical connector tab is formed from the materials of the main body. In the parallel plate embodiment the first conductive element is exposed so as to form a front electrode, the rear electrode being the second conductive layer. In the split-electrode embodiment, the second conductive layer on the main body and connector tab is split into two halves, the two halves on the tab being the electrical connections and lying in the same plane. An alternating current charge applied to one half of the split second conductor will capacitively couple it to the other half through the unconnected first conductor. A universal connector that can connect an electrical power source to either the parallel plate or split-electrode embodiment is also disclosed. The connector has a pair of spaced apart contact fingers of different lengths that contact the front and rear electrodes of the parallel plate lamp or both halves of the second conductor in the split electrode lamp.
Abstract:
The invention involves moving a strip of electroluminescent material past a shear in successive increments each equal to the length of a lamp outline to be cut from the strip. The shear is actuated after each incremental advance to cut a blank having a first dimension equal to the desired length of the lamp outline and a second dimension equal to the strip width, which is a multiple of the desired width of the lamp outline. The blank is then advanced past a punch and die in successive increments equal to the width of the lamp outline to be cut. The punch is actuated after each incremental advance to cut across or transverse to the second dimension to form lamp outlines having the desired length and width. The punch and die are configured to simultaneously cut a straight side of a lamp outline advanced past the punch and a straight side having a projecting electrical tab of an adjacent lamp outline behind the punch. A lamp outline is thus cut by first and second incremental advances with the punch actuated after each incremental advance.
Abstract:
An illuminating apparatus for a wall switch or outlet that has a pair of terminals across which an electric potential is available, including an electroluminescent lamp plate having first and second electrode deposits on a surface thereof, and a contact plate disposed between the wall switch or outlet and the electroluminescent lamp plate and having a front surface facing the electroluminescent lamp plate and a back surface facing the switch or outlet, the contact plate having first and second conductors, each of which pass through the contact plate, the first conductor contacting the first electrode deposit and one of the terminals, and the second conductor contacting the second electrode deposit and the other of the terminals.
Abstract:
The electroluminescent panel is formed by depositing a first high dielectric strength adhesive layer on a transparent conductively coated plastic carrier strip, electrostatically depositing dry phosphor particles onto the first dielectric adhesive layer to form a phosphor particle approximate mono-layer (layer thickness not exceeding largest size particle electrostatically deposited) with particles disposed side-by-side uniformly across the dielectric adhesive layer, curing the dielectric adhesive layer with ultraviolet light through the carrier strip, depositing a second high dielectric constant filler layer on the phosphor particle layer to surround and overcoat the particles and then curing the second dielectric filler layer to embed the phosphor particles in a high dielectric constant matrix. The layers can be applied to and cured on the carrier strip as it continuously moves through a production line. Apparatus for practicing the invention is also disclosed.