Abstract:
Determining a store topography and/or a user's location within the topography comprises beacon responses received by a user device. A merchant places beacons at various unknown locations in the store. A user enables an application on the user device that allows the device to transmit probing requests to the beacons and transmit data received in response to the requests to a detection system. The detection system receives the beacon responses from the user device, and using a predictive or trained classifier model, predicts the topography based on the information received. The determined topography may be used to provide information to the user when the user is located in a particular determined location in the topography.
Abstract:
A location management system identifies points of interest that may be of interest to one or more users. The location management system defines a geofence boundary encompassing a particular point of interest. When the location management system determines that the user device is inside the geofence boundary—but not, for example, when the location management system determines that the user determines that the user device is outside the geofence boundary—the location management system instructs the user device to determine wireless signals available to the user device. The location management system then receives wireless signal data from the user device for available wireless signals. By matching the received wireless signal data to known wireless signals available at the identified points of interest, the location management system determines that the user device (and hence the user) is at the point of interest.
Abstract:
Systems and methods for beacon device fleet management are provided. One example system includes a plurality of beacon devices, a plurality of mobile computing devices, a fleet management system, and a fleet owner computing devices. One example method includes receiving, by the fleet management system, a device status request from the fleet owner computing device. The fleet management system determines one or more operational statuses of beacon devices owned by the fleet owner and transmits data indicative of the one or more operational statuses to the fleet owner computing device. The operational statuses can include a current detection status (e.g., online or offline), a location status, a power source status, and/or other operational parameters.
Abstract:
A location management system identifies points of interest that may be of interest to one or more users. The location management system defines a geofence boundary encompassing a particular point of interest. When the location management system determines that the user device is inside the geofence boundary—but not, for example, when the location management system determines that the user determines that the user device is outside the geofence boundary—the location management system instructs the user device to determine wireless signals available to the user device. The location management system then receives wireless signal data from the user device for available wireless signals. By matching the received wireless signal data to known wireless signals available at the identified points of interest, the location management system determines that the user device (and hence the user) is at the point of interest.
Abstract:
A mechanism to evaluate the geographic popularity of geographically-located user-generated content is presented. A method to evaluate the geographic popularity of geographically-located user-generated content includes receiving a user-generated content item having metadata indicating a geographic location of the user-generated content item, determining geographic location metadata of each of a plurality of views of the content item, calculating a view geographic entropy of the content item by dividing the plurality of views across multiple geographic regions while taking into account the geographic location of the content item, and providing the calculated view geographic entropy of the content item for presentation in a visual display that is part of an analytical report of the content item.
Abstract:
A mechanism to evaluate the geographic popularity of geographically-located user-generated content is presented. A method to evaluate the geographic popularity of geographically-located user-generated content includes receiving a user-generated content item having metadata indicating a geographic location of the user-generated content item, determining geographic location metadata of each of a plurality of views of the content item, calculating a view geographic entropy of the content item by dividing the plurality of views across multiple geographic regions while taking into account the geographic location of the content item, and providing the calculated view geographic entropy of the content item for presentation in a visual display that is part of an analytical report of the content item.