Abstract:
A method includes receiving a connection request from a network base station on a primary component carrier (CC) associated with a primary user equipment (UE), and connecting to the network base station on the primary CC. The method also includes receiving a configuration message from the network base station. The configuration message instructs operation of at least one secondary CC. The at least one secondary CC is associated with at least one secondary UE. The method also includes, in response to receiving the configuration message, instructing the at least one secondary UE to operate on the at least one secondary CC and receive data from the network base station on the at least one secondary CC.
Abstract:
Disclosed are a system, device and method for avoiding interference with data communications from an interference source. A system may include a power consumption indication device and a network access point or client computer. The power consumption indication device may include a receptacle, a power detector and a transceiver. The receptacle may be configured to be connectable to an interference source via an electrical plug. The interference source may be a microwave or other similar device that emits radio frequency energy that may interfere with data communications. The power consumption device may generate an interference warning notification signal that may be received by a processor in either the network access point or client computer. The network access point or client computer may execute a process to detect the interference and schedule data communications to avoid the interference.
Abstract:
Collisions in wireless networks may be avoided by limiting competing transmissions at the same time or within a temporally proximate time range. A relay schedule may be transmitted with each frame in a transmission chain, the relay schedule containing transmission time information such that each participating node in the transmission chain has designated transmission times. The transmission times may be different such that transmissions are spaced out in an effective manner. A non-participant node may receive the transmission with the relay schedule and may delay transmissions during conflicting times based on the relay schedule.
Abstract:
A computing device can detect an event associated with an alert sound, and responsive to detecting the event, identify the alert sound associated with the detected event. The alert sound includes one or more control tones that are configured to communicate occurrence of the event to a hearing aid device within audio range of the computing device. The computing device outputs the alert sound via a speaker of the computing device, such that a hearing aid device can detect the one or more control tones and, in response, the hearing aid device can generate and output an audible indication associated with the detected one or more control tones.
Abstract:
A method and system are described that allow a device operating in coordination with other devices to synchronize the devices operation with the other devices. A controllable device processor may determine that a received data packet is a retransmission of an initial control command data packet. The processor may obtain from the retransmitted data packet a start value and a time indicator related to performance of the operation. A ramp rate related to the operation to be performed may be obtained. Using the time indicator, an adjusted ramp rate may be calculated. An output value for the device may be set based on the start value, the adjusted ramp rate, and the time indicator. The adjusted ramp rate may result in completing the operation at substantially the same time as though the device received the original command.
Abstract:
The disclosed subject matter may provide a system and methods for commissioning a device or appliance into a network. A processor may detect the insertion of a removable device into a data receptacle of a first device. The first device may be an appliance or a network controller. Information may be retrieved from or delivered to the removable device. The information may be information specific to the appliance, such as model number, or may be information related to the network controller. For example, information delivered from the network controller to the removable device may include a network address assignment and network protocol to be used by an appliance when the appliance communicates with the network. The removable device may be removed from the first device and inserted into a data receptacle of a second device.
Abstract:
A way of synchronizing action execution across networked nodes using relative time. A command and a first time value can be received at a first networked device, where the first time value can correspond to a relative time at which an action is to occur. The command can be forwarded to another, second networked device along with a second relative time value that has been adjusted to take into account the elapsed time between the receipt of the command at the first device and the sending of the command to the second device. The action, which can include one or more events, can be caused to take place upon the execution of the command at about the first time value after the command was received at the first device and at about the second time value after the command was received at the second device.
Abstract:
Collisions in wireless networks may be avoided by limiting competing transmissions at the same time or within a temporally proximate time range. A relay schedule may be transmitted with each frame in a transmission chain, the relay schedule containing transmission time information such that each participating node in the transmission chain has designated transmission times. The transmission times may be different such that transmissions are spaced out in an effective manner. A non-participant node may receive the transmission with the relay schedule and may delay transmissions during conflicting times based on the relay schedule.
Abstract:
Collisions in wireless networks may be avoided by stacking acknowledge messages, relaying the stacked acknowledge messages, and reducing the number of acknowledge frames transmitted as a result of successful stacked acknowledge message transmissions. Additionally, a blind relay setup may be implemented to increase successful transmission rates such that a relay node in a transmission chain is configured to relay a frame without addressing the relay to a specific node. Non-neighboring nodes may receive frames out of order and relay the frames despite the out of order delivery.
Abstract:
The broadcast nature of wireless communication may be utilized by transmitting a packet frame identifying at least one relay node that can transmit the packet frame without transmitting an acknowledgement frame confirming receipt of the packet frame by a respective relay node. A relay node may cancel a relay obligation to transmit a packet frame based on detecting transmission of the packet frame by another node or based on detection of an acknowledgement frame confirming that a destination node received the packet frame. A transmission chain corresponding to the transmission of a packet frame may be assigned a priority. Alternatively or in addition, a relay node within a transmission chain may be assigned a priority. A priority may determine the amount of delay inserted prior to transmitting a packet frame.