Abstract:
The location of the memory controllers within the on-chip fabric of multiprocessor architectures plays a central role in latency bandwidth characteristics of the processor-to-memory traffic. Intelligent placement substantially reduces the maximum channel load depending on the specific memory controller configuration selected. A variety of simulation techniques are used along and in combination to determine optimal memory controller arrangements. Diamond-type and diagonal X-type memory controller configurations that spread network traffic across all rows and columns in a multiprocessor array substantially improve over other arrangements. Such placements reduce interconnect latency by an average of 10% for real workloads, and the small number of memory controllers relative to the number of on-chip cores opens up a rich design space to optimize latency and bandwidth characteristics of the on-chip network.
Abstract:
Probabilistic arbitration is combined with distance-based weights to achieve equality of service in interconnection networks, such as those used with chip multiprocessors. This arbitration desirably used incorporates nonlinear weights that are assigned to requests. The nonlinear weights incorporate different arbitration weight metrics, namely fixed weight, constantly increasing weight, and variably increasing weight. Probabilistic arbitration for an on-chip router avoids the need for additional buffers or virtual channels, creating a simple, low-cost mechanism for achieving equality of service. The nonlinearly weighted probabilistic arbitration includes additional benefits such as providing quality-of-service features and fairness in terms of both throughput and latency that approaches the global fairness achieved with age-base arbitration. This provides a more stable network by achieving high sustained throughput beyond saturation. Each router or switch in the network may include an arbiter to apply the weighted probabilistic arbitration.