Abstract:
A power transistor monolithic integrated structure produced by a bipolar-epitaxial technology includes a plurality of parallel connected transistor cellular structures each containing at least one component transistor. The base of each component transistor is coupled to a common base control conductor via a protective resistor and a fuse link which melts in the event of a defect in the transistor cell. Another fuse link is incorporated in the branch conductors leading from the collectors of respective component transistor to a common conductor web mounted on the surface of the transistor chip. All transistor cellular structures are electrically isolated one from each other during the manufacturing process.
Abstract:
A monolithically integrated precision reference voltage source by the bandgap principle, suitable for a wide temperature range, is proposed, in which the parabolic course of the temperature response curve of the reference voltage is linearized by process means available in the monolithic integration, dispensing with additional active components such as transistors or diodes. The precision voltage reference source includes two resistors (21, 22), which are represented by the N-doped emitter diffusion zone.
Abstract:
A monolithic integrated power transistor chip includes a plurality of transistor cells arranged in two opposite and mutually spaced rows. Each cell has emitter- and collector connection spots arranged side-by-side and connected to corresponding branch conductors directed by rows of connection points extending along opposite edges on the upper surface of the chip.
Abstract:
A current regulator, preferably constructed in accordance with monolithic integrated technology, for high currents is proposed, whose output current (I) is a function of an input quantity (E). In this case the output current (I) is less in a range of the input quantity (E) different from a value of zero than the value given in this range by the functional relationship between the input quantity (E) and the output current (I).
Abstract:
A monolithically integrated circuit in the packed state has at least one characteristic value and/or at least one function which is able to be varied by applying at least one striking potential to at least two of the standard terminal connections leading to the outside of the integrated circuit.
Abstract:
An electronic circuit device having a monolithic integrated power transistor is disclosed that comprises a parallel connection of a plurality of individual partial transistors (1, 2, 3, . . . , n). In order to stabilize the distribution of the sum current to the individual partial transistors (1, 2, 3, . . . , n) resistors (41, 42, 43, . . . 4n) are provided in their emitter lines. At least one of the resistors (41, 42, 43, . . . 4n) in the emitter lines of the partial transistors (1, 2, 3, . . . , n) serves as measurement resistor for producing a signal voltage proportional to the current to provide an electronic circuit device having current regulation or current limiting, as shown in FIG. 2.
Abstract:
A semiconductor means is integrated monolithically on a substrate and comprises at least one power diode (3), its cathode being at a higher potential (6) than the potential (5) of the substrate. Its anode forms the emitter and its cathode forms the base of a parasitic substrate transistor (4). In order to reduce the power loss caused by means of this parasitic substrate transistor (4), means (8) for increasing the collector path resistance (41) of the parasitic transistor (4) are provided.
Abstract:
A voltage regulator (4) for a generator (1), particularly for use in motor vehicles, is provided which produces an average field current in the exciting winding (2) of the generator (1) by switching on and off the field current by a controlled semiconductor switch in cooperation with a recovery diode in such a way that the generator voltage remains approximately constant independently of the load and the speed. The voltage regulator (4) contains an integrally acting component for compensating for load-dependent and speed-dependent errors, which component is produced by a nonlinearly working integrator for the relative turn-on period of the current through the exciting winding (2) and is fed back into the regulating circuit of the voltage regulator (4). The nonlinearly of the output variable of the integrator is produced in that, for the formation of the correction function, one period portion during the current flow through the exciting winding (2) of the generator (1) and the controlled semiconductor switch is evaluated differently than the other period portion during the current flow through the exciting winding (2) and the recovery diode.
Abstract:
A voltage regulator for generators is proposed which, compared with a voltage regulator known, for example, from DE-PS 27 38 897, is supplemented in such a manner that an integral component corresponding to the relative operating time of the field current is formed and this component is fed into the actual control loop. The relative operating time of the field current in this arrangement can be obtained more or less directly from the switching characteristic of the switching transistor (20) for the field current or by means of a sensing resistor (33) in series with the exciter winding (21).
Abstract:
To improve the regulating response of an automotive-type, solid-state voltage regulator and render it essentially immune to ripple while additionally permitting complete integration of the entire voltage regulator without external discrete filter capacitors, a difference amplifier has the output voltage of the on-board vehicle network, for example from an alternator, applied thereto for comparison with a reference, the difference amplifier, respectively, controlling a capacitor charge current supply and a discharge current drain circuit, both connected to a small capacitor in the order of, for example, only 30 pF which, hence, can be integrated, the voltage across the capacitor being sensed in a high-low window or range-type discriminator which has a dual-state output to control conduction or non-conduction of a transistor in series with the field of the alternator in dependence upon whether the voltage across the capacitor, as it is being charged or drained, is above an upper threshold or below a lower threshold of the discriminator. Preferably, the circuit includes current mirror circuits in which currents in one branch are reflected in another to provide for balance, temperature compensation, and to render the circuit immune to variations in loading on the alternator.