Abstract:
The present subject matter is directed to a system and method for operating an electrical power circuit connected to a power grid. The power circuit includes a power converter electrically coupled to a generator. The method includes monitoring at least one speed condition of the generator during operation of the power circuit. Another step includes determining one or more voltage conditions of the power circuit. The method also includes calculating a maximum reactive current for the generator as a function of at least one of the speed condition or the one or more voltage conditions. Thus, the method also includes operating the generator based on the maximum reactive current so as to prevent an actual modulation index of the power converter from exceeding a predetermined threshold.
Abstract:
Systems and methods for controlling reactive current output of a line converter in a power system are provided. In one example embodiment, a method includes receiving a margin signal determined based at least in part on a stator current margin or a rotor current margin. The method includes determining a spillover margin based at least in part on the margin signal. The method includes determining an adjusted spillover margin using a spillover gain. The method includes determining a reactive current command for a line converter based at least in part on the adjusted spillover margin. The method includes controlling the output of the reactive current by the line converter based at least in part on the reactive current command. The spillover gain is variable based at least in part on a maximum line converter current.
Abstract:
In one aspect, a method for controlling the operation of a power generation system configured to supply power to an electrical grid may generally include monitoring a rotor speed of a generator of the power generation system and determining a gain scaling factor based on the rotor speed, wherein the gain scaling factor increases with decreases in the rotor speed across a range of rotor speeds. In addition, the method may include adjusting a regulator gain to be applied within a current regulator of the power generation system based on the gain scaling factor and applying the adjusted regulator gain within the current regulator in order to generate a voltage command signal for controlling a power converter of the power generation system.
Abstract:
The present subject matter is directed to a system and method for operating a wind turbine connected to a power grid. The method includes receiving, via a controller, one or more current feedback signals from one or more electric current sensors of the wind turbine. Another step includes determining, via the controller, if a ground fault is occurring in the wind turbine based on the current feedback signals. In response to detecting a ground fault, the method includes tripping one or more electrical components of the wind turbine and electrically de-coupling the wind turbine from the power grid.
Abstract:
The present disclosure is directed to a system and method for improving reactive current response time in a renewable energy power system connected to a power grid. The method includes providing, via a controller of the power system, a permissive logic relating to the power grid. Another step includes determining, via a controller of the renewable energy power system, a reactive current reference command for the renewable energy power system in response to the permissive logic being satisfied. The method also includes generating, via the controller, a reactive current pulse command for the renewable energy power system. Thus, the controller is configured to determine a total reactive current command by combining the reactive current reference command and the reactive current pulse command. Further, the method includes operating the renewable energy power system based on the total reactive current command so as to improve the current response time.
Abstract:
The present subject matter is directed to an electrical power circuit connected to a power grid and method of operating same. The electrical power circuit has a power converter electrically coupled to a generator, such as a doubly-fed induction generator, having a rotor and a stator. Thus, the method includes operating rotor connections of the rotor of the generator in a wye configuration during a first rotor speed operating range. Further, the method includes monitoring a rotor speed of the rotor of the generator. Thus, the method also includes transitioning the rotor connections of the rotor from the wye configuration to a delta configuration if the rotor speed changes to a second rotor speed operating range.
Abstract:
A method for controlling a wind turbine system may generally include controlling a wind turbine to operate at a speed and torque setting within a permissible operating region defined between maximum and minimum operating curves, receiving a speed de-rate request and/or a torque de-rate request to de-rate the wind turbine based on a limiting constraint of the wind turbine system, determining an adjusted speed setting and/or an adjusted torque setting for the wind turbine based on the speed de-rate request and/or the torque de-rate request, determining whether an adjustment of the wind turbine operation to the adjusted speed setting and/or the adjusted torque setting would place the turbine outside the permissible operating region and, if the adjustment would place the operation outside the permissible operating region, adjusting the speed setting and/or the torque setting to a new speed and/or torque setting defined along the maximum or minimum operating curve.
Abstract:
The present subject matter is directed to a system and method for operating an electrical power circuit connected to a power grid. The electrical power circuit has a power converter electrically coupled to a generator. The method includes monitoring a rotor speed of the generator during operation of the electrical power circuit. The method also includes increasing an operating range of the rotor speed of the generator. Further, the method includes determining at least one of a line-side voltage of a line-side converter of the power converter or a rotor-side voltage of a rotor-side converter of the power converter during operation of the electrical power circuit. Another step include controlling, via a converter controller, a DC link voltage of a DC link of the power converter as a function of one or more of the line-side voltage, the rotor-side voltage, and/or the rotor speed.
Abstract:
A method for controlling a wind turbine system may generally include controlling a wind turbine to operate at a speed and torque setting within a permissible operating region defined between maximum and minimum operating curves, receiving a speed de-rate request and/or a torque de-rate request to de-rate the wind turbine based on a limiting constraint of the wind turbine system, determining an adjusted speed setting and/or an adjusted torque setting for the wind turbine based on the speed de-rate request and/or the torque de-rate request, determining whether an adjustment of the wind turbine operation to the adjusted speed setting and/or the adjusted torque setting would place the turbine outside the permissible operating region and, if the adjustment would place the operation outside the permissible operating region, adjusting the speed setting and/or the torque setting to a new speed and/or torque setting defined along the maximum or minimum operating curve.
Abstract:
The present subject matter is directed to a method for managing and/or categorizing trip faults of an electrical component, such as power converter, of a wind turbine. The method includes receiving, via a local controller of the wind turbine, an indication of at least one trip fault in the electrical component of the wind turbine. The method also includes determining, via the local controller, a unique identifier for the trip fault. More specifically, the unique identifier contains information regarding a type of the trip fault and at least one of an origin or a cause, of the trip fault. Further, the method includes sending, via the local controller, the unique identifier to a supervisory controller of the wind turbine. Thus, the method also includes implementing, via the supervisory controller, a control action based on the unique identifier.