Abstract:
Described herein are methods for the efficient production of antibodies and other multimeric protein complexes (collectively referred to herein as heteromultimeric proteins) capable of specifically binding to more than one target. The targets may be, for example, different epitopes on a single molecule or located on different molecules. The methods combine efficient, high gene expression level, appropriate assembly, and ease of purification for the heteromultimeric proteins. The invention also provides methods of using these heteromultimeric proteins, and compositions, kits and articles of manufacture comprising these antibodies.
Abstract:
The present invention provides bispecific antigen-binding molecules having a monovalent arm specific to a first target antigen (e.g., a T cell antigen, such as CD3) and a bivalent arm specific for a second target antigen (e.g., a tumor antigen, such as HER2). Bispecific antigen-binding molecules are useful in the treatment of disorders, such as cancer (e.g., HER2-positive cancer). The invention also features methods of producing bispecific antigen-binding molecules, methods of treating disorders using bispecific antigen-binding molecules, and compositions including bispecific antigen-binding molecules.
Abstract:
The present invention relates to anti-FcRH5 antibodies, including anti-FcRH5 antibodies comprising an FcRH5 binding domain and a CD3 binding domain (e.g., FcRH5 T cell-dependent bispecific (TDB) antibodies), and methods of using the same.
Abstract:
Described herein are methods for the efficient production of antibodies and other multimeric protein complexes (collectively referred to herein as heteromultimeric proteins) capable of specifically binding to more than one target. The targets may be, for example, different epitopes on a single molecule or located on different molecules. The methods combine efficient, high gene expression level, appropriate assembly, and ease of purification for the heteromultimeric proteins. The invention also provides methods of using these heteromultimeric proteins, and compositions, kits and articles of manufacture comprising these antibodies.
Abstract:
The present invention relates to anti-FcRH5 antibodies, including anti-FcRH5 antibodies comprising an FcRH5 binding domain and a CD3 binding domain (e.g., FcRH5 T cell-dependent bispecific (TDB) antibodies), and methods of using the same.
Abstract:
Described herein are methods for the efficient production of antibodies and other multimeric protein complexes (collectively referred to herein as heteromultimeric proteins) capable of specifically binding to more than one target. The targets may be, for example, different epitopes on a single molecule or located on different molecules. The methods combine efficient, high gene expression level, appropriate assembly, and ease of purification for the heteromultimeric proteins. The invention also provides methods of using these heteromultimeric proteins, and compositions, kits and articles of manufacture comprising these antibodies.
Abstract:
Provided are, inter alia, multispecific antigen binding proteins, or antigen-binding fragments thereof, comprising one or more mutations in the VH/VL domains and/or CH1/CL domains, pharmaceutical compositions comprising same, isolated nucleic acids, vectors, and host cells encoding/expressing same, method of making the multispecific antigen binding proteins, computer readable media for evaluating multispecific antigen binding proteins, and libraries.
Abstract:
The present invention provides anti-C-C motif chemokine receptor 8 (CCR8) antigen-binding molecules (e.g., bispecific antigen-binding molecules) and compositions thereof. The invention also features polynucleotides, vectors, host cells, methods of production, pharmaceutical compositions, methods of treating a disease or disorder, such as cancer, methods of depleting regulatory T cells, related uses and compositions for use, and kits for use with the one or more methods.