Abstract:
A transactional memory (TM) receives a lookup command across a bus from a processor. The command includes a base address, a starting bit position, and a mask size. In response to the lookup command, the TM pulls an input value (IV). The TM uses the starting bit position and the mask size to select a portion of the IV. A first sub-portion of the portion of the IV and the base address are summed to generate a memory address. The memory address is used to read a word containing multiple result values (RVs) from memory. One RV from the word is selected using a multiplexing circuit and a second sub-portion of the portion of the IV. If the selected RV is a final value, then lookup operation is complete and the TM sends the RV to the processor, otherwise the TM performs another lookup operation based upon the selected RV.
Abstract:
A transactional memory (TM) receives a lookup command across a bus from a processor. Only final result values are stored in memory. The command includes a base address, a starting bit position, and mask size. In response to the lookup command, the TM pulls an input value (IV). A selecting circuit within the TM uses the starting bit position and mask size to select a portion of the IV. The portion of the IV and the base address are used to generate a memory address. The memory address is used to read a word containing multiple result values (RVs) from memory. One RV from the word is selected using a multiplexing circuit and a result location value (RLV) generated from the portion of the IV. A word selector circuit and arithmetic circuits are used to generate the memory address and RLV. The TM sends the selected RV to the processor.
Abstract:
A hardware trie structure includes a tree of internal node circuits and leaf node circuits. Each internal node is configured by a corresponding multi-bit node control value (NCV). Each leaf node can output a corresponding result value (RV). An input value (IV) supplied onto input leads of the trie causes signals to propagate through the trie such that one of the leaf nodes outputs one of the RVs onto output leads of the trie. In a transactional memory, a memory stores a set of NCVs and RVs. In response to a lookup command, the NCVs and RVs are read out of memory and are used to configure the trie. The IV of the lookup is supplied to the input leads, and the trie looks up an RV. A non-final RV initiates another lookup in a recursive fashion, whereas a final RV is returned as the result of the lookup command.
Abstract:
A transactional memory (TM) receives an Atomic Metering Command (AMC) across a bus from a processor. The command includes a memory address and a meter pair indicator value. In response to the AMC, the TM pulls an input value (IV). The TM uses the memory address to read a word including multiple credit values from a memory unit. Circuitry within the TM selects a pair of credit values, subtracts the IV from each of the pair of credit values thereby generating a pair of decremented credit values, compares the pair of decremented credit values with a threshold value, respectively, thereby generating a pair of indicator values, performs a lookup based upon the pair of indicator values and the meter pair indicator value, and outputs a selector value and a result value that represents a meter color. The selector value determines the credit values written back to the memory unit.
Abstract:
An island-based network flow processor (IB-NFP) integrated circuit includes rectangular islands disposed in rows. In one example, the configurable mesh data bus is configurable to form a command/push/pull data bus over which multiple transactions can occur simultaneously on different parts of the integrated circuit. The rectangular islands of one row are oriented in staggered relation with respect to the rectangular islands of the next row. The left and right edges of islands in a row align with left and right edges of islands two rows down in the row structure. The data bus involves multiple meshes. In each mesh, the island has a centrally located crossbar switch and six radiating half links, and half links down to functional circuitry of the island. The staggered orientation of the islands, and the structure of the half links, allows half links of adjacent islands to align with one another.
Abstract:
A programmed state processing machine architecture and method that provides improved efficiency for processing data manipulation tasks. In one embodiment, the processing machine comprises a control engine and a plurality coprocessors, a data memory, and an instruction memory. A sequence of instructions having a plurality of portions are issued by the instruction memory, wherein the control engine and each of the processors is caused to perform a specific task based on the portion of the instructions designated for that component. Accordingly, a data manipulation task can be divided into a plurality of subtasks that are processed in parallel by respective processing components in the architecture.
Abstract:
An island-based network flow processor (IB-NFP) integrated circuit includes islands organized in rows. A configurable mesh event bus extends through the islands and is configured to form one or more local event rings and a global event chain. The configurable mesh event bus is configured with configuration information received via a configurable mesh control bus. Each local event ring involves event ring circuits and event ring segments. In one example, an event packet being communicated along a local event ring reaches an event ring circuit. The event ring circuit examines the event packet and determines whether it meets a programmable criterion. If the event packet meets the criterion, then the event packet is inserted into the global event chain. The global event chain communicates the event packet to a global event manager that logs events and maintains statistics and other information.
Abstract:
A transactional memory (TM) includes a selectable bank of hardware algorithm prework engines, a selectable bank of hardware lookup engines, and a memory unit. The memory unit stores result values (RVs), instructions, and lookup data operands. The transactional memory receives a lookup command across a bus from one of a plurality of processors. The lookup command includes a source identification value, data, a table number value, and a table set value. In response to the lookup command, the transactional memory selects one hardware algorithm prework engine and one hardware lookup engine to perform the lookup operation. The selected hardware algorithm prework engine modifies data included in the lookup command. The selected hardware lookup engine performs a lookup operation using the modified data and lookup operands provided by the memory unit. In response to performing the lookup operation, the transactional memory returns a result value and optionally an instruction.
Abstract:
A network appliance includes a network processor and several processing units. Packets a flow pair are received onto the network appliance. Without performing deep packet inspection on any packet of the flow pair, the network processor analyzes the flows, estimates therefrom the application protocol used, and determines a predicted future time when the next packet will likely be received. The network processor determines to send the next packet to a selected one of the processing units based in part on the predicted future time. In some cases, the network processor causes a cache of the selected processing unit to be preloaded shortly before the predicted future time. When the next packet is actually received, the packet is directed to the selected processing unit. In this way, packets are directed to processing units within the network appliance based on predicted future packet arrival times without the use of deep packet inspection.
Abstract:
An island-based integrated circuit includes a configurable mesh data bus. The data bus includes four meshes. Each mesh includes, for each island, a crossbar switch and radiating half links. The half links of adjacent islands align to form links between crossbar switches. A link is implemented as two distributed credit FIFOs. In one direction, a link portion involves a FIFO associated with an output port of a first island, a first chain of registers, and a second FIFO associated with an input port of a second island. When a transaction value passes through the FIFO and through the crossbar switch of the second island, an arbiter in the crossbar switch returns a taken signal. The taken signal passes back through a second chain of registers to a credit count circuit in the first island. The credit count circuit maintains a credit count value for the distributed credit FIFO.