Abstract:
A cylinder control system of a vehicle includes a cylinder control module and an air per cylinder (APC) prediction module. The cylinder control module determines a desired cylinder activation/deactivation sequence. The cylinder control module also activates and deactivates valves of cylinders of an engine based on the desired cylinder activation/deactivation sequence. The APC prediction module predicts an amount of air that will be trapped within a next activated cylinder in a firing order of the cylinders based on a cylinder activation/deactivation sequence of the last Q cylinders in the firing order. Q is an integer greater than one.
Abstract:
A system according to the principles of the present disclosure includes an engine air sensor, an engine air prediction module, and an engine actuator module. The engine air sensor measures an engine air parameter at a first rate. The engine air parameter includes at least one of a mass flow rate of air flowing into an intake manifold of an engine, a pressure within the intake manifold, and a mass of air within a cylinder of the engine. The engine air prediction module predicts the engine air parameter at a second rate that is greater than the first rate. The engine actuator module controls an actuator of the engine based on at least one of the measured engine air parameter and the predicted engine air parameter.
Abstract:
A system includes a parameter module that determines at least one of a position of a throttle and a load of an engine. A cylinder status module generates a status signal indicating an activation status of each cylinder of the engine. The cylinder status module determines whether one or more of the cylinders are activated. A first pressure prediction module, when all of the cylinders are activated, predicts first intake port pressures for the cylinders of the engine according to a first model and based on the at least one of the position of the throttle and the engine load. A second pressure prediction module, when one or more of the cylinders is deactivated, predicts second intake port pressures for the deactivated cylinders according to a second model and based on the status signal and the at least one of the position of the throttle and the engine load.
Abstract:
A system includes a parameter module that determines at least one of a position of a throttle and a load of an engine. A cylinder status module generates a status signal indicating an activation status of each cylinder of the engine. The cylinder status module determines whether one or more of the cylinders are activated. A first pressure prediction module, when all of the cylinders are activated, predicts first intake port pressures for the cylinders of the engine according to a first model and based on the at least one of the position of the throttle and the engine load. A second pressure prediction module, when one or more of the cylinders is deactivated, predicts second intake port pressures for the deactivated cylinders according to a second model and based on the status signal and the at least one of the position of the throttle and the engine load.
Abstract:
A cylinder control system of a vehicle includes a cylinder control module and an air per cylinder (APC) prediction module. The cylinder control module determines a desired cylinder activation/deactivation sequence. The cylinder control module also activates and deactivates valves of cylinders of an engine based on the desired cylinder activation/deactivation sequence. The APC prediction module predicts an amount of air that will be trapped within a next activated cylinder in a firing order of the cylinders based on a cylinder activation/deactivation sequence of the last Q cylinders in the firing order. Q is an integer greater than one.