Abstract:
A system and method for conditioning DC power received from hybrid DC power sources is disclosed. A power conversion circuit is coupled to a respective DC power source to selectively condition the output power generated thereby to a DC bus voltage. The power conversion circuit includes a switch arrangement and capacitors arranged to provide a charge balancing in the power conversion circuit. A controller in operable communication with the switch arrangement receives inputs on a DC bus voltage and at least one parameter related to operation of the DC power source, and determines an adjustable voltage to be output from the conversion circuit to the DC bus based on the received inputs. The controller then selectively controls operation of the switch arrangement in order to generate the determined adjustable voltage.
Abstract:
A high-voltage DC (HVDC) power system and a method of controlling and protecting the HVDC power system includes a plurality of sending-end (SE) modules coupled in electrical series and a plurality of receiving-end (RE) power converter modules electrically coupled to said plurality of SE modules, the RE modules coupled in a switchyard configuration, the switchyard configuration including a plurality of load branches coupled together in electrical series, each load branch including a branch bypass switch configured to bypass load current around an associated load branch, and a branch protection system.
Abstract:
A method is used for operating a switching amplifier, the switching amplifier includes a plurality of cascade elements. The method includes: coupling the cascade elements in series between two terminals of a load; providing two leg circuits each comprised of switches in each of the cascade elements; and controlling all of the switches comprised in the switching amplifier using space vector modulation (SVM), such that a change of a common mode (CM) voltage generated by the switching amplifier is in a predetermined range.
Abstract:
A gradient amplifier system, includes: a power stage comprising a plurality of bridge amplifiers, each operates at a first switching frequency; a gradient coil coupled to the power stage and configured to produce a magnetic field proportional to a coil current signal supplied by the power stage; a controller stage coupled to an input terminal of the power stage and configured to: generate a pulse width modulated gate signal based on the coil current signal and a reference current signal, wherein the pulse width modulated gate signal is generated at a second switching frequency when a slew rate associated with the reference current signal is below a threshold rate for at least a first time period; and apply the pulse width modulated gate signal to the power stage for changing an operating frequency of each of the plurality of bridge amplifiers from the first to the second switching frequency.
Abstract:
A switching amplifier includes a plurality of cascade elements, each bridge circuit includes an inductive load coupled between a first leg terminal of one of the at least two leg circuits and a second leg terminal of another one of the at least two leg circuits. A first leg voltage of the first leg terminal have a phase shift relative to a second leg voltage of the second leg terminal, the phase shift is used for causing the inductive load to store electric energy and generating a minimum circulating current−I min or I min sufficient to effect conducting of a corresponding diode; each of the switches is configured to be turned on if the corresponding diode conducts current to effect zero voltage switching of the corresponding switch. The minimum circulating current−I min or I min is equal to a constant value.
Abstract:
A system and method for conditioning DC power received from hybrid DC power sources is disclosed. A power conversion circuit is coupled to a respective DC power source to selectively condition the output power generated thereby to a DC bus voltage. The power conversion circuit includes a switch arrangement and capacitors arranged to provide a charge balancing in the power conversion circuit. A controller in operable communication with the switch arrangement receives inputs on a DC bus voltage and at least one parameter related to operation of the DC power source, and determines an adjustable voltage to be output from the conversion circuit to the DC bus based on the received inputs. The controller then selectively controls operation of the switch arrangement in order to generate the determined adjustable voltage.
Abstract:
An over-voltage protection system includes an electronic valve connected across two terminals of a circuit and an over-voltage detection circuit connected across one of the plurality of semiconductor devices for detecting an over-voltage across the circuit. The electronic valve includes a plurality of semiconductor devices connected in series. The over-voltage detection circuit includes a voltage divider circuit connected to a break-over diode in a way to provide a representative low voltage to the break-over diode and an optocoupler configured to receive a current from the break-over diode when the representative low voltage exceeds a threshold voltage of the break-over diode indicating an over-voltage condition. The representative low voltage provided to the break-over diode represents a voltage across the one semiconductor device. A plurality of self-powered gate drive circuits are connected to the plurality of semiconductor devices, wherein the plurality of self-powered gate drive circuits receive over-voltage triggering pulses from the optocoupler during the over-voltage condition and switch on the plurality of semiconductor devices to bypass the circuit.
Abstract:
A high-voltage DC (HVDC) power system and a method of controlling and protecting the HVDC power system includes a plurality of sending-end (SE) modules coupled in electrical series and a plurality of receiving-end (RE) power converter modules electrically coupled to said plurality of SE modules, the RE modules coupled in a switchyard configuration, the switchyard configuration including a plurality of load branches coupled together in electrical series, each load branch including a branch bypass switch configured to bypass load current around an associated load branch, and a branch protection system.
Abstract:
A system and method for conditioning DC power received from hybrid DC power sources is disclosed. A power conversion circuit is coupled to a respective DC power source to selectively condition the output power generated thereby to a DC bus voltage. The power conversion circuit includes a switch arrangement and capacitors arranged to provide a charge balancing in the power conversion circuit. A controller in operable communication with the switch arrangement receives inputs on a DC bus voltage and at least one parameter related to operation of the DC power source, and determines an adjustable voltage to be output from the conversion circuit to the DC bus based on the received inputs. The controller then selectively controls operation of the switch arrangement in order to generate the determined adjustable voltage.
Abstract:
A method is used for operating a switching amplifier, the switching amplifier includes a plurality of cascade elements. The method includes: coupling the cascade elements in series between two terminals of a load; providing two leg circuits each comprised of switches in each of the cascade elements; and controlling all of the switches comprised in the switching amplifier using space vector modulation (SVM), such that a change of a common mode (CM) voltage generated by the switching amplifier is in a predetermined range.