Abstract:
A power generation system may include: a first gas turbine system including a first turbine component, a first integral compressor and a first combustor to which air from the first integral compressor and fuel are supplied. The first integral compressor has a flow capacity greater than an intake capacity of the first combustor and/or the first turbine component, creating an excess air flow. A second gas turbine system may include similar components to the first except but without excess capacity in its compressor. A turbo-expander may be operatively coupled to the second gas turbine system. Control valves may control flow of the excess air flow from the first gas turbine system to at least one of the second gas turbine system and the turbo-expander, and flow of a discharge of the turbo-expander to an inlet of at least one of the first integral compressor and the second compressor.
Abstract:
A power generation system may include a generator, and a gas turbine system for powering the generator, the gas turbine system including a turbine component, an integral compressor and a combustor to which air from the integral compressor and fuel are supplied, the combustor arranged to supply hot combustion gases to the turbine component, and the integral compressor having a flow capacity greater than an intake capacity of at least one of the combustor and the turbine component, creating an excess air flow. A turbo-expander may also power the generator. A first control valve control flow of the excess air flow along an excess air flow path to an inlet of the turbo-expander. An educator may be positioned in the excess air flow path for using the excess air flow as a motive force to augment the excess air flow with additional air. A discharge of the turbo-expander is supplied to an inlet of the integral compressor.
Abstract:
A fuel delivery system is provided. The system includes a natural gas reformer configured to receive a flow of natural gas and a flow of air. The natural gas reformer combines the natural gas and the air in a reaction to produce a flow of reformate gas. The system also includes a mixing device coupled downstream from the natural gas reformer. The mixing device is configured to selectively mix amounts of the reformate gas, vaporized liquid fuel, and natural gas to produce a flow of mixed product fuel having predetermined operating parameters.
Abstract:
A combustor can assembly includes a plurality of combustor cans spaced circumferentially about a gas turbine engine. Each combustor can is coupled in flow communication with at least one fuel manifold via a respective can fuel line. The combustor can assembly also includes a first interconnecting fuel line that includes a first end and a second end. The first end is coupled in flow communication with the can fuel line of a first combustor can, and the second end is coupled in flow communication with the can fuel line of a second combustor can that is not circumferentially adjacent to the first combustor can. The combustor can assembly further includes a first control device operatively coupled to the can fuel line of the first combustor can. The first control device is operable to change a dynamic operational characteristic of the first and second combustor cans independently of other combustor cans.
Abstract:
A system including a gas turbine system configured to transition between a first load state and a second load state, wherein the gas turbine system comprises an airflow control module configured to adjust an airflow through the gas turbine system between a minimum airflow condition and a maximum airflow condition, and a controller configured to control the gas turbine system to operate with a load path between a first load path corresponding to the minimum airflow condition and a second load path corresponding to the maximum airflow condition, wherein the controller is configured to control the gas turbine system to transition between the first load state and the second load state using the load path between the first and second load paths.
Abstract:
A power generation system may include: a first gas turbine system including a first turbine component, a first integral compressor and a first combustor to which air from the first integral compressor and fuel are supplied. The first integral compressor has a flow capacity greater than an intake capacity of the first combustor and/or the first turbine component, creating an excess air flow. A second gas turbine system may include similar components to the first except but without excess capacity in its compressor. A turbo-expander may be operatively coupled to the second gas turbine system. Control valves may control flow of the excess air flow from the first gas turbine system to at least one of the second gas turbine system and the turbo-expander, and flow of a discharge of the turbo-expander to an inlet of at least one of the first integral compressor and the second compressor.
Abstract:
Various embodiments include a cooled cooling-air system including: an inlet hot fluid conduit fluidly connected with a hot air source from a turbomachine; an inlet cold fluid conduit fluidly connected with a cold fluid source, the cold fluid source having a lower temperature than the hot air source; and a first thermoelectric generator fluidly connected with the inlet hot fluid conduit and the inlet cold fluid conduit, the first thermoelectric generator for cooling the inlet hot fluid conduit and simultaneously generating an electrical output.
Abstract:
A system including a gas turbine system configured to transition between a first load state and a second load state, wherein the gas turbine system comprises an airflow control module configured to adjust an airflow through the gas turbine system between a minimum airflow condition and a maximum airflow condition, and a controller configured to control the gas turbine system to operate with a load path between a first load path corresponding to the minimum airflow condition and a second load path corresponding to the maximum airflow condition, wherein the controller is configured to control the gas turbine system to transition between the first load state and the second load state using the load path between the first and second load paths.
Abstract:
A system including a gas turbine system and an electrolysis unit configured to produce a hydrogen gas for reducing a minimum emissions compliance load of the gas turbine system.
Abstract:
A combustor assembly for a gas turbine engine includes a plurality of combustors spaced circumferentially about the gas turbine engine. Each of the combustors is coupled in flow communication with a manifold configured to channel a liquid to the plurality of combustors. A plurality of fuel lines is coupled in flow communication with the manifold. Each fuel line is coupled in flow communication with a respective combustor of the plurality of combustors. In addition, the combustor assembly includes a flow balance system having a plurality of flow balance devices. Each flow balance device is operatively coupled to one of the fuel lines. Each flow balance device is operative to reduce the flow of liquid to the respective combustor.