Abstract:
An electromagnetic braking system includes an electrically conductive disc coupled to a rotatable shaft of a power generation system for operating in an island mode. The rotatable shaft is operatively coupled between a prime mover and a generator for supplying power to an island grid. The electromagnetic braking system further includes a controller for receiving at least one status or synchronization signal and for generating a control signal based on the at least one signal and an inducting unit for applying an electromagnetic braking force on the electrically conductive disc when commanded by the control signal to regulate a rotational speed of the rotatable shaft.
Abstract:
A power generation system includes a generator operatively coupled to an engine for generating electrical power and supplying the electrical power to a grid. Further, the power generation system includes a resistive braking system operatively coupled between the generator and the grid. The resistive braking system includes a mechanical switch connected in parallel with a resistor, and a controller for, in response to a grid event, controlling power from the engine and operating the mechanical switch to redirect current between the mechanical switch and the parallel connected resistor.
Abstract:
A power generation system includes a generator operatively coupled to an engine for generating electrical power and supplying the electrical power to a grid. Further, the power generation system includes a resistive braking system operatively coupled between the generator and the grid. The resistive braking system includes a mechanical switch connected in parallel with a resistor, and a controller for, in response to a grid event, controlling power from the engine and operating the mechanical switch to redirect current between the mechanical switch and the parallel connected resistor.
Abstract:
A braking system includes a converter, a capacitor coupled to an output of the converter, a bridge coupled in parallel to the capacitor, and at least one inductor coupled to the bridge, an electrically conductive disc disposed proximate to the at least one inductor, and a switching unit controller for commanding the converter to convert a level of voltage supplied therefrom from a first voltage level to a second voltage level and thereby increase energy stored in the capacitor, and, upon receiving a brake command, commanding the bridge to ramp-up electrical current in the at least one inductor so as to induce an electromagnetic force on the electrically conductive disc.
Abstract:
An electromagnetic braking system includes an electrically conductive disc coupled to a rotatable shaft of a power generation system for operating in an island mode. The rotatable shaft is operatively coupled between a prime mover and a generator for supplying power to an island grid. The electromagnetic braking system further includes a controller for receiving at least one status or synchronization signal and for generating a control signal based on the at least one signal and an inducting unit for applying an electromagnetic braking force on the electrically conductive disc when commanded by the control signal to regulate a rotational speed of the rotatable shaft.
Abstract:
An electromagnetic braking system includes an electrically conductive disc coupled to a rotatable shaft of a power generation system. The rotatable shaft is operatively coupled to a prime mover and a generator. The electromagnetic braking system further includes an inducting unit for applying an electromagnetic braking torque on the electrically conductive disc when commanded by a control signal and a controller for receiving an activation signal from an activating unit, receiving a rotational signal from a rotational sensor coupled to the rotatable shaft or the generator, determining a control signal when the rotational signal is outside of a threshold, and, when the activation signal is active and the rotational signal is outside of the threshold, sending the control signal to the inducting unit to regulate a rotational dynamic of the rotatable shaft.
Abstract:
A system including an electromagnetic braking system that has an eddy current brake. The eddy current brake includes an electrically conductive surface coupled to a shaft of a generator system, wherein the eddy current brake is configured to induce an electromagnetic force on the electrically conductive surface when powered. The electromagnetic braking system further includes a supercapacitor coupled to the eddy current brake, wherein the supercapacitor is configured to discharge to power the eddy current brake for the duration of a ride through event of the generator system, and the supercapacitor is configured to supply a threshold current to the eddy current brake within approximately 100 ms of a start of the ride through event.
Abstract:
A braking system includes a converter, a capacitor coupled to an output of the converter, a bridge coupled in parallel to the capacitor, and at least one inductor coupled to the bridge, an electrically conductive disc disposed proximate to the at least one inductor, and a switching unit controller for commanding the converter to convert a level of voltage supplied therefrom from a first voltage level to a second voltage level and thereby increase energy stored in the capacitor, and, upon receiving a brake command, commanding the bridge to ramp-up electrical current in the at least one inductor so as to induce an electromagnetic force on the electrically conductive disc.