Abstract:
A physical address determining method, apparatus, and device, and a storage medium, and belongs to the field of solar power generation, includes: controlling at least two slave nodes to sequentially start up, and detecting a change status of an input voltage of the master node; dividing a photovoltaic power generation system into a plurality of photovoltaic strings; and for each candidate photovoltaic string, controlling any slave node located in the candidate photovoltaic string to start up and other slave nodes to shut down, and using the physical address as a physical address of the candidate photovoltaic string. This disclosure provides a manner of automatically determining a physical address of a photovoltaic string, thereby implementing photovoltaic-string locating and expanding a system function range. When an anomaly occurs, the anomaly can be eliminated in a timely manner, thereby improving system stability.
Abstract:
A method can be used to control a voltage source converter of a power supporting arrangement to act as a virtual synchronous machine. The method includes obtaining a measured power level of the converter, processing the measured power level using a differential equation of an angular velocity of the virtual synchronous machine in order to obtain a control contribution, providing a phase angle of a physical quantity used to control the converter based on the control contribution, monitoring the ability of the converter to act as a virtual synchronous machine, determining that the ability of the converter to act as a virtual synchronous machine is deemed insufficient, and adjusting the control contribution by increasing the damping term and/or decreasing the moment of inertia term in response to determining that the ability of the converter to act as a virtual synchronous machine is deemed insufficient.
Abstract:
A method of synchronizing a cross-compound generator system on one or more turning gears during startup includes determining, via a notch monitor controller, first and second angular velocities, respectively, of a first and a second rotor. The method also includes simultaneously exciting, via the notch monitor controller, the first and second rotors to attain electromechanical coupling therebetween. The method further includes determining, via the notch monitor controller, a value of a time at which a calibration value of an offset is a constant value, where the offset is representative of a phase alignment of the first rotor relative to the second rotor, and where the offset is indicative of a successful electromechanical coupling therebetween. The method also includes disengaging the one or more turning gears from the cross-compound generator system.
Abstract:
A power plant, and a method for using an electrical unit therefor are disclosed, wherein, an electrical machine can be connected to a power network via a converter and a block transformer. A method is disclosed for using the electrical unit, wherein the converter disconnects the block transformer from the machine in the event of a malfunction of the block transformer.
Abstract:
An electromagnetic braking system includes an electrically conductive disc coupled to a rotatable shaft of a power generation system for operating in an island mode. The rotatable shaft is operatively coupled between a prime mover and a generator for supplying power to an island grid. The electromagnetic braking system further includes a controller for receiving at least one status or synchronization signal and for generating a control signal based on the at least one signal and an inducting unit for applying an electromagnetic braking force on the electrically conductive disc when commanded by the control signal to regulate a rotational speed of the rotatable shaft.
Abstract:
A pumped-storage power plant, such as an electric unit can include a frequency converter and a rotating electric synchronous machine, the machine being provided in a cavern. The frequency converter can include at least two elements which can be used as inverters or as rectifiers according to the operating mode of the machine, for example during the operation of the motor or during the operation of the generator. The machine-side element can be provided within the cavern, and the network-side element can be provided outside of the cavern.
Abstract:
A wind turbine is provided. The wind turbine includes a transformer having a low-voltage side and a high-voltage side. The transformer is configured to step up a voltage of the low-voltage side of the transformer to a voltage of an external grid. The wind turbine further includes an electrical power generating unit which is connected to the low-voltage side of the transformer and configured to feed an ac-power to the low-voltage side of the transformer. A charging device of the wind turbine is connected to the low-voltage side of the transformer and configured to charge the low-voltage side of the transformer when the generator does not feed ac-power to the low-voltage side of the transformer.
Abstract:
Systems and methods for managing interaction between inverter-based DC and other power systems are disclosed. In one embodiment, a 3-phase isolation transformer is fluxed to create a 3-phase rotating field from the output of a source inverter. An inductive filter turns that output into three sine waves. A secondary inverter regenerates the system, sometimes after the isolation transformer is fluxed, and by advancing or retarding the secondary inverter's phase, current (and, thus, the DC voltage and power direction) is controlled. In another embodiment, an inverter is supplied by a DC source. The inverter is controlled to match its output voltage, current, and phase to a live AC grid, then the two are connected. The inverter frequency is then driven to advance the phase of the inverter in relation to the grid. Alternatively, the inverter voltage is then driven at a level greater than that of the grid.
Abstract:
This disclosure includes systems and methods for managing the interaction between inverter-based DC and other power systems. In one embodiment, a 3-phase isolation transformer is fluxed to create a 3-phase rotating field from the output of a source inverter. An inductive filter turns that output into three sine waves. A secondary inverter regenerates the system, sometimes after the isolation transformer is fluxed, and by advancing or retarding the secondary inverter's phase, current (and, thus, the DC voltage and power direction) is controlled. In another embodiment, an inverter is supplied by a DC source. The inverter is controlled to match its output voltage, current, and phase to a live AC grid, then the two are connected. The inverter frequency is then driven to advance the phase of the inverter in relation to the grid. Alternatively, the inverter voltage is then driven at a level greater than that of the grid.
Abstract:
A method of operating a power system is provided. The power system has a plurality of generator sets and a bus. The method monitors the bus and generator sets disconnected from the bus. The method supplies to a control device information associated with the operating state of each of the generator sets and the bus. The method determines a relative frequency mismatch and a relative phase mismatch between the frequency and phase of the bus and a generator, and generates a frequency speed bias and a phase speed bias for the generator. The method adds the frequency and phase speed biases to form a total speed bias, tunes the total speed bias to make the frequency and phase speed biases combine in a complementary manner, and connects the generator to the bus when the voltage, frequency, and phase of the generator are within a permissible range of the bus.