Abstract:
A method for fabricating a high-density zeolite membrane structure is described. The method includes the step of combining (i) a mineral zeolite material; (ii) at least one cement precursor; and (iii) an organic binder, with an aqueous component, to form an aqueous composite zeolite composition. The zeolite composition is then applied on a surface of a scaffold formed from a porous, metal oxide material. The zeolite composition is dried, and then heated under conditions to form a metal oxide-zeolite composite layer. This layer is exposed to a phosphate composition, under conditions sufficient to reduce the porosity to a level no greater than about 10%. A high-density zeolite cement composite membrane structure results. Related methods for separating hydrogen from a fluid stream, using the membrane structure, are also disclosed.
Abstract:
Disclosed herein are methods of forming substantially crystalline, dense silicon carbide fibers from infusible polysilazane fibers by utilizing a single stage pyrolysis. The pyrolysis is performed using a continuous process in a single furnace with a constant atmospheric condition. Also disclosed are substantially crystalline, dense silicon carbide fibers formed by these methods.
Abstract:
Methods for forming ceramic cores are disclosed. A ceramic core formed using the method of the present application includes a silica depletion zone encapsulating an inner zone. The inner zone includes mullite and the silica depletion zone includes alumina. The method includes heat-treating a ceramic body in a non-oxidizing atmospheric condition for an effective temperature and time combination at a pressure less than 10−2 atmosphere to form the silica depletion zone at a surface of the ceramic core.
Abstract:
Systems and methods for removing organic contaminants from water may be used, for example, to treat produced water from a steam assisted heavy oil recovery operation. The treated produced water may be re-used to create steam. Alternatively, the produced water may be a blowdown stream treated to facilitate further treatment in a thermal crystallizer. The treatments may include pH adjustment or separating de-solubilized organics or both. Other treatments may include one or more of oxidation, sorption and biological treatments. The treatments may be used alone or in various combinations. One exemplary combination includes reducing the pH of produced water, separating de-solubilized organics from the produced water, and oxidizing the produced water or contacting the produced water with activated carbon.
Abstract:
The present disclosure generally relates to a ceramic core comprising predominantly mullite, which is derived from a precursor comprising alumina particles and siloxane binders. Free silica is present in the ceramic body, but is largely unavailable for reaction with metal alloys used in investment casting. Methods of making cast metal articles are also disclosed.
Abstract:
A method for ammonia synthesis using a water-gas shift membrane reactor (WGSMR) is presented. The method includes carrying out a water-gas shift reaction in the WGSMR to form a first product stream and a carbon dioxide (CO2) stream, wherein the first product stream includes nitrogen (N2) and hydrogen (H2), and a molar ratio of H2 to N2 in the first product stream is about 3. The method further includes separating at least a portion of the residual CO2 in the first product stream in a CO2 separation unit to form a second product stream, and separating at least a portion of the residual CO2 and carbon monoxide (CO) in the second product stream in a methanator unit to form a third product stream. The method further includes generating an ammonia stream from the third product stream in an ammonia synthesis unit. A system for ammonia synthesis is also presented.