Abstract:
The subject matter of the present disclosure generally relates to techniques for image analysis. In certain embodiments, various morphological or intensity-based features as well as different thresholding approaches may be used to segment the subpopulation of interest and classify object in the images.
Abstract:
The present approach relates to the use of trained artificial neural networks, such as convolutional neural networks, to classify vascular structures, such as using a hierarchical classification scheme. In certain approaches, the artificial neural network is trained using training data that is all or partly derived from synthetic vascular representations.
Abstract:
A method in one embodiment includes acquiring optical image information with a detection unit configured to be operably coupled to a patient. The optical image information corresponds to microcirculation of the patient. The method also includes generating a microcirculation map of microvasculature of the patient using the optical image information. Further, the method includes generating a quantitative microcirculation index based on the microcirculation map, the quantitative microcirculation index corresponding to a condition of the patient.
Abstract:
A method of segmenting a digital image of biological tissue includes accessing a ranking model calculated from training data representing shapes of conforming and non-conforming biological unit exemplars. The ranking model may include support vectors defining a hyperplane in a vector space. The method further includes accessing image data representing the digital image, identifying a first shape and a set of second constituent shapes in the digital image, wherein the first shape comprises a union of the set of second constituent shapes, determining a rank of a first data point in the image data corresponding to the first shape and a rank of a second data point in the image data corresponding to the set of second constituent shapes into the vector space, and segmenting the digital image using the first shape or the set of second constituent shapes based on which data point has a greater respective rank.
Abstract:
Improved systems and methods for the analysis of digital images are provided. More particularly, the present disclosure provides for improved systems and methods for the analysis of digital images of biological tissue samples. Exemplary embodiments provide for: i) segmenting, ii) grouping, and iii) quantifying molecular protein profiles of individual cells in terms of sub cellular compartments (nuclei, membrane, and cytoplasm). The systems and methods of the present disclosure advantageously perform tissue segmentation at the sub-cellular level to facilitate analyzing, grouping and quantifying protein expression profiles of tissue in tissue sections globally and/or locally. Performing local-global tissue analysis and protein quantification advantageously enables correlation of spatial and molecular configuration of cells with molecular information of different types of cancer.
Abstract:
Methods, apparatus, systems, and articles of manufacture are disclosed to autonomously detect thermal anomalies. Disclosed examples include an example apparatus to detect engine anomalies comprising: at least one memory; instructions in the apparatus; and processor circuitry to execute the instructions to: control a plurality of infrared cameras to capture a baseline image set, the baseline image set including at least two thermal images; generate emissivity data based on the baseline image set; provide the baseline image set and the emissivity data to an artificial intelligence model, the artificial intelligence model to generate a reconstructed image set; determine a difference between the baseline image set and the reconstructed image set; and in response to the difference exceeding a threshold, generate an alert indicating detection of an engine anomaly.
Abstract:
The subject matter of the present disclosure generally relates to techniques for image analysis. In certain embodiments, various morphological or intensity-based features as well as different thresholding approaches may be used to segment the subpopulation of interest and classify object in the images.
Abstract:
A method in one embodiment includes acquiring optical image information with a detection unit configured to be operably coupled to a patient. The optical image information corresponds to microcirculation of the patient. The method also includes generating a microcirculation map of microvasculature of the patient using the optical image information. Further, the method includes generating a quantitative microcirculation index based on the microcirculation map, the quantitative microcirculation index corresponding to a condition of the patient.
Abstract:
The present disclosure relates to characterization of biological samples. By way of example, a biological sample may be contacted with a plurality of probes specific for targets in the sample, such as probes for immune markers and segmenting probes. Acquired image data of the sample may be used to segment the images into epithelial and stromal regions to characterize individual cells in the sample based on the binding of the probes. Further, the biological sample may be characterized by a distribution, location, and type of a plurality of the characterized cells.
Abstract:
The present disclosure relates to characterization of biological samples. By way of example, a biological sample may be contacted with a plurality of probes specific for targets in the sample, such as probes for immune markers and segmenting probes. Acquired image data of the sample may be used to segment the images into epithelial and stromal regions to characterize individual cells in the sample based on the binding of the probes. Further, the biological sample may be characterized by a distribution, location, and type of a plurality of the characterized cells.