Abstract:
The present invention relates to a composition for detecting an epidermal cell growth factor receptor gene mutation and to a kit comprising the composition and, more specifically, to a primer and probe set composition for detecting an epidermal cell growth factor gene mutation, and to a kit for detecting an EGFR gene mutation, comprising the composition. A method according to the present invention can not only predict and diagnose responsiveness to a therapeutic agent for the prognosis of a cancer patient, but also predict a cancer metastasis or relapse Thus, the method can be useful for the purposes of determining the need to administer an anticancer therapeutic agent and guiding the direction of future treatment, and for monitoring a cancer metastasis or relapse.
Abstract:
The present invention relates to a method of predicting the effectiveness of chemotherapy in a breast cancer patient, and more particularly, to a method for predicting the effectiveness of chemotherapy by measuring the expression levels of genes for predicting prognosis of breast cancer and a standard gene in a biological sample obtained from the breast cancer patient, and a method for predicting the difference between a patient group having a high effectiveness of chemotherapy and a patient group having a low effectiveness of chemotherapy.Therefore, the method of the present invention can accurately predict the effectiveness of chemotherapy for the breast cancer patient, and can be used for the purpose of presenting clues about the direction of breast cancer treatment in the future.
Abstract:
The present invention relates to a method for selecting a gene intended to predict the prognosis for a cancer, to the selected gene for predicting the prognosis of cancer and to a kit for predicting and a method for predicting metastasis in breast-cancer patients by using the same. In the present invention, a straight forward method is used to achieve high-reliability prediction of the patient's prognosis by analyzing for the genetic characteristics of early stage breast cancer, and thus the present invention can be used to advantage in prognosis diagnosis which can reduce unnecessary anticancer therapy.
Abstract:
The present invention relates to a method for predicting the prognosis of a breast cancer patient. More specifically, to provide information needed to predict the prognosis of a breast cancer patient, the method for predicting the prognosis of breast cancer including the following steps of the present invention comprises: (a) obtaining a biological sample from a breast cancer patient; (b) measuring the mRNA expression level of matrix metallopeptidase 11 (MMP11) and the mRNA expression level of cluster of differentiation 2 (CD2) from patient information or the sample of step (a); (c) normalizing the gene mRNA expression levels selected and measured in step (b); and (d) predicting the prognosis of breast cancer by combining the gene expression levels normalized in step (c), wherein overexpression of the MMP11 indicates a bad prognosis, and overexpression of CD2 indicates a good prognosis. The method of the present invention has an effect of being capable of more accurately predicting the future prognosis of metastasis, recurrence, or metastatic recurrence in breast cancer patients, and in particular, has a very excellent ability to predict the prognosis of HER2-type breast cancer, the prognosis of which is very poor, and thus can be usefully used to provide clues for the direction of future treatment of breast cancer.
Abstract:
The present invention relates to a method for selecting a gene intended to predict the prognosis for a cancer, to the selected gene for predicting the prognosis of cancer and to a kit for predicting and a method for predicting metastasis in breast-cancer patients by using the same. In the present invention, a straight forward method is used to achieve high-reliability prediction of the patient's prognosis by analysing for the genetic characteristics of early stage breast cancer, and thus the present invention can be used to advantage in prognosis diagnosis which can reduce unnecessary anticancer therapy.
Abstract:
The present invention relates to a method of predicting the effectiveness of chemotherapy in a breast cancer patient, and more particularly, to a method for predicting the effectiveness of chemotherapy by measuring the expression levels of genes for predicting prognosis of breast cancer and a standard gene in a biological sample obtained from the breast cancer patient, and a method for predicting the difference between a patient group having a high effectiveness of chemotherapy and a patient group having a low effectiveness of chemotherapy. Therefore, the method of the present invention can accurately predict the effectiveness of chemotherapy for the breast cancer patient and can be used for the purpose of presenting clues about the direction of breast cancer treatment in the future.
Abstract:
Disclosed are data processing and analysis methods for gene expression data for identifying endogenous reference genes and a composition for the quantitative analysis of gene expression, comprising a pair of primers and/or probes useful in amplifying the identified endogenous reference genes. Introduced with the concepts of “Zero's proportion” and CV, the method allows different datasets to be integrally analyzed, thereby searching for novel reference genes. By the method, 2,087 genes are first found as housekeeping genes which are expressed in most tissues, and the usefulness thereof in the relative quantification of different target genes is determined by analyzing their expression stability. Of the 2,087 genes, 13 genes show higher expression stability with lower expression levels across a wide range of samples than traditional reference genes such as GAPDH and ACTS, and therefore are suitable for the normalization of universal genes having relatively low expression levels.
Abstract:
Disclosed are data processing and analysis methods for gene expression data for identifying endogenous reference genes and a composition for the quantitative analysis of gene expression, comprising a pair of primers and/or probes useful in amplifying the identified endogenous reference genes. Introduced with the concepts of “Zero's proportion” and CV, the method allows different datasets to be integrally analyzed, thereby searching for novel reference genes. By the method, 2,087 genes are first found as housekeeping genes which are expressed in most tissues, and the usefulness thereof in the relative quantification of different target genes is determined by analyzing their expression stability. Of the 2,087 genes, 13 genes show higher expression stability with lower expression levels across a wide range of samples than traditional reference genes such as GAPDH and ACTS, and therefore are suitable for the normalization of universal genes having relatively low expression levels.
Abstract:
The present invention relates to a method for determining the DNA quality of a biological sample and, more specifically, to a method for determining the DNA quality of a biological sample by performing a quantitative polymerase chain reaction (PCR) using primers capable of amplifying a target gene, a method for preparing the primers used in the method, and a method for standardizing the amount of detected target gene mutation by using the determined DNA quality. The method of the present invention enables objective evaluation of the DNA quality of a biological sample used in gene analysis and the presentation of objective results on the expression ratio of a gene mutation, thereby providing reliable information in the fields of clinical research and companion diagnosis.
Abstract:
The present invention relates to a gene for predicting or diagnosing the prognosis of early-stage breast cancer and to a use thereof, and more specifically relates to a genetic marker for predicting or diagnosing the prognosis of breast cancer, including TRBC1 (T cell receptor beta constant 1), BTN3A2 (butyrophilin, subfamily 3, member A2) or HLA-DPA1 (major histocompatibility complex, class II, DP alpha 1) for providing information necessary for predicting or diagnosing the prognosis of a breast cancer patient. The genetic marker of the present invention allows the prediction or diagnosis of the prognosis of a breast cancer patient, and can therefore advantageously be used for the purpose of providing a direction as to the future course of breast cancer treatment, including a decision on whether anticancer therapy is necessary.