摘要:
A method and system for creating and deploying a mesh network are disclosed. In one embodiment, the method comprises providing a mesh router having a plurality of radios. The mesh router is used in a cell of a plurality of cells that covers a geographic region. Channels are assigned to the plurality of radios. The channels are selected from a plurality of channels to allow channel reuse throughout the plurality of cells.
摘要:
A method and system for creating and deploying a mesh network are disclosed. In one embodiment, the method comprises providing a mesh router having a plurality of radios. The mesh router is used in a cell of a plurality of cells that covers a geographic region. Channels are assigned to the plurality of radios. The channels are selected from a plurality of channels to allow channel reuse throughout the plurality of cells.
摘要:
A method and system for creating and deploying a mesh network are disclosed. In one embodiment, the method comprises providing a mesh router having a plurality of radios. The mesh router is used in a cell of a plurality of cells that covers a geographic region. Channels are assigned to the plurality of radios. The channels are selected from a plurality of channels to allow channel reuse throughout the plurality of cells.
摘要:
A method and system for creating and deploying a mesh network are disclosed. In one embodiment, the method comprises providing a mesh router having a plurality of radios. The mesh router is used in a cell of a plurality of cells that covers a geographic region. Channels are assigned to the plurality of radios. The channels are selected from a plurality of channels to allow channel reuse throughout the plurality of cells.
摘要:
A method and system for creating and deploying a mesh network are disclosed. In one embodiment, the method comprises providing a mesh router having a plurality of radios. The mesh router is used in a cell of a plurality of cells that covers a geographic region. Channels are assigned to the plurality of radios. The channels are selected from a plurality of channels to allow channel reuse throughout the plurality of cells.
摘要:
A method and system for creating and deploying a mesh network are disclosed. In one embodiment, the method comprises providing a mesh router having a plurality of radios. The mesh router is used in a cell of a plurality of cells that covers a geographic region. Channels are assigned to the plurality of radios. The channels are selected from a plurality of channels to allow channel reuse throughout the plurality of cells.
摘要:
A method and system for decoding a combination of a first message and a second message that were encoded using a generating matrix of a systematic linear block code is described. The combination of the first message and the second message may be decoded using a parity check matrix. If the second message is known, the first message is decoding using a first component code parity check matrix. If first message is known, the second message is decoded using a second component code parity check matrix. The parity check matrix can be derived from the generating matrix and the first message or the second message can be decoded using the first or second component code parity check matrix.
摘要:
A method for low-density parity-check hard decision decoding includes computing, for every decoding iteration, a discrepancy of extrinsic messages responsive to channel inputs of a receiver, performing a flipping of the channel inputs responsive to a comparison of the discrepancy of extrinsic messages to a flipping threshold, the flipping threshold for each decoding iteration being determined based on a threshold computation responsive to a channel error probability estimation in a first iteration of a decoding of the channel inputs, and check node decoding responsive to the flipping of channel inputs.
摘要:
A MMSE-based deterministic sequential Monte Carlo (SMC) method for MIMO demodulation exhibiting square root complexity in terms of constellation size. Further extensions to the method reduce the search space resulting in significant reduction in computational requirements while minimally impacting performance. As a hard decision algorithm, the methods achieve sphere decoder performance while imposing a much smaller computational load.