Abstract:
For a frame comprising a payload region in which a client signal is to be accommodated, and an overhead region accommodation location information indicating a location where the client signal is to be accommodated, the frame being able to be processed as an m (m is an integer equal to or greater than 2)-byte cycle multiframe, the location information for the frame is defined as an m×n (n is an integer equal to or greater than 2)-byte cycle multiframe; using the location information defined as the multiframe, the location where the client signal is to be accommodated in the payload region is defined; and the client signal is accommodated in the payload region, based on the defined location where the client signal is to be accommodated.
Abstract:
An optical transmission device, which transmits a first frame containing second frames, includes newly adding and allocating, when a bit rate of a specific second frame among the second frames is to be changed, a time slot corresponding to an increase in the bit rate of the specific second frame to time slots previously set for the second frames in time slots of the first frame; and inputting a dummy signal as data to the newly-added time slot while performing such a setting that both of: a data writing speed and a data reading speed; and a delay time between writing and reading of the data for the newly-added time slot are in agreement with both of: a data writing speed and a data reading speed; and a delay time between writing and reading of the data for each time slot of the previously-set time slots.
Abstract:
An edge server disposed on an edge of a cloud network, includes: a processor, wherein when encryption key information relating to a terminal which requests a connection to the edge server and the encryption key information generated before the request, is included in shared information shared between a cloud server and another edge server in the cloud network, the processor is configured to start encryption communication with the terminal using the encryption key information of the shared information.
Abstract:
A transmission apparatus includes a generation unit configured to generate a first data unit including a second data unit, and an addition unit configured to add fault data indicating a fault state of the second data unit to a data portion different from a data portion in which the second data unit is positioned within the first data unit.
Abstract:
A transmitting apparatus includes a first circuit to which a base clock and a first clock condition are input, the first circuit outputting a first enable signal based on the base clock and the first clock condition; a second circuit to which the base clock and a second clock condition are input, the second circuit outputting a second enable signal based on the base clock and the second clock condition; a first frame processing circuit receiving a first frame input signal and the first enable signal to output a first frame output signal in synchronization with the first enable signal; and a second frame processing circuit receiving a second frame input signal and the second enable signal to output a second frame output signal in synchronization with the second enable signal.
Abstract:
An optical communication apparatus includes: a first interface unit configured to receive packets; a conversion unit configured to convert a header of a packet of the packets received by the first interface unit, which is to be transmitted to a device other than an adjacent relay device; and a second interface unit configured to transmit the packet of which the header is converted by the conversion unit.
Abstract:
An apparatus includes a switch unit configured to switch signal paths between a plurality of input ports and a plurality of output ports. The apparatus controls the signal paths according to the connection setting information stored in the apparatus. The connection setting information includes first and second connection information. The first connection setting information specifies a first output port to which a signal input via an input port is to be output, in association with identification information identifying the signal, and the second connection setting information specifies a second output port to which the signal is to be alternatively output. The apparatus controls setting of a signal path of the switch unit, based on the second connection setting information in a case where another signal path has been already allocated to the first output port specified by the first connection setting information.