摘要:
A method and apparatus for method of continuously producing 1,1,1,2,3-pentafluoropropane with high yield is provided. The method includes (a) bringing a CoF3-containing cobalt fluoride in a reactor into contact with 3,3,3-trifluoropropene to produce a CoF2-containing cobalt fluoride and 1,1,1,2,3-pentafluoropropane, (b) transferring the CoF2-containing cobalt fluoride in the reactor to a regenerator and bringing the transferred CoF2-containing cobalt fluoride into contact with fluorine gas to regenerate a CoF3-containing cobalt fluoride, and (c) transferring the CoF3-containing cobalt fluoride in the regenerator to the reactor and employing the transferred CoF3-containing cobalt fluoride in Operation (a). Accordingly, the 1,1,1,2,3-pentafluoropropane can be continuously produced with high yield from the 3,3,3-trifluoropropene using a cobalt fluoride (CoF2/CoF3) as a fluid catalyst, thereby improving the reaction stability and readily adjusting the optimum conversion rate and selectivity.
摘要:
A method and apparatus for method of continuously producing 1,1,1,2,3-pentafluoropropane with high yield is provided. The method includes (a) bringing a CoF3-containing cobalt fluoride in a reactor into contact with 3,3,3-trifluoropropene to produce a CoF2-containing cobalt fluoride and 1,1,1,2,3-pentafluoropropane, (b) transferring the CoF2-containing cobalt fluoride in the reactor to a regenerator and bringing the transferred CoF2-containing cobalt fluoride into contact with fluorine gas to regenerate a CoF3-containing cobalt fluoride, and (c) transferring the CoF3-containing cobalt fluoride in the regenerator to the reactor and employing the transferred CoF3-containing cobalt fluoride in Operation (a). Accordingly, the 1,1,1,2,3-pentafluoropropane can be continuously produced with high yield from the 3,3,3-trifluoropropene using a cobalt fluoride (CoF2/CoF3) as a fluid catalyst, thereby improving the reaction stability and readily adjusting the optimum conversion rate and selectivity.
摘要:
A method and apparatus for method of continuously producing 1,1,1,2,3-pentafluoropropane with high yield is provided. The method includes (a) bringing a CoF3-containing cobalt fluoride in a reactor into contact with 3,3,3-trifluoropropene to produce a CoF2-containing cobalt fluoride and 1,1,1,2,3-pentafluoropropane, (b) transferring the CoF2-containing cobalt fluoride in the reactor to a regenerator and bringing the transferred CoF2-containing cobalt fluoride into contact with fluorine gas to regenerate a CoF3-containing cobalt fluoride, and (c) transferring the CoF3-containing cobalt fluoride in the regenerator to the reactor and employing the transferred CoF3-containing cobalt fluoride in Operation (a). Accordingly, the 1,1,1,2,3-pentafluoropropane can be continuously produced with high yield from the 3,3,3-trifluoropropene using a cobalt fluoride (CoF2/CoF3) as a fluid catalyst, thereby improving the reaction stability and readily adjusting the optimum conversion rate and selectivity.