Abstract:
In a portable apparatus of a medical system, in a case where an operation unit receives an operation from a physician on the basis of the display contents of a display unit, the medical apparatus controlled as a result of the operation of the operation unit by an operator is defined by an operation control unit, and a signal in response to the operation contents received by the operation unit is transmitted from a transmission unit to the defined medical apparatus.
Abstract:
A radiological image-capturing device includes: a first read control section that executes a first read mode in which electric signals stored in a plurality of pixels are read out simultaneously in units of a plurality of rows; and an emission-start determining section that determines that the emission of radiation from a radiation source onto an image-capturing panel has started when the values of the electric signals read by the first read control section have become greater than an arbitrarily settable threshold. If it is determined by the emission-start determining section that the emission of the radiation has started, the first read control section terminates the reading of the electric signals, and thereby brings the image-capturing panel into an exposure state.
Abstract:
A USB memory device incorporates a flash memory and a memory controller. An access lock is placed on a data storage area of the flash memory. When the USB memory device is attached to an electronic cassette, a cassette controller controls a USB controller to input an unlock password to the USB memory device. The memory controller unlocks the access lock on the data storage area when the unlock password matches a password stored in a program area of the flash memory in advance.
Abstract:
An image processing apparatus includes at least one processor. The processor is configured to execute processing of acquiring a first image as a radiographic image including an image of a subject generated by radioscopy for continuously irradiating the subject with radiation to perform imaging, acquiring a second image different from the radiographic image including the image of the subject before acquiring the first image, specifying a subject region as a region where the image of the subject is formed in the first image, based on the second image, and executing image processing of enhancing contrast of the specified subject region on the first image and outputting the first image after the image processing.
Abstract:
In a radiography system and radiography method according to the present invention, the radiography system comprises: a radiography device further comprising a radiation device further comprising a radiation source, and a radiation detection device which converts radiation which passes through a radiography subject into radiography information; and a system control portion which controls the radiography device to execute radiography at a set frame rate. The system control portion further comprises: a radiation emission disabling portion which interrupts the irradiation of radiation from the radiation source at least in a case where an error occurs with the radiography device; and a recovery processing portion which implements control so as to set the irradiation energy of the radiation source to a preset low irradiation energy and execute the radiography in a case where recovering from the error state.
Abstract:
A determination section of an FPD checks external information against a determination table and determines whether detection of a rise of X-ray pulses is allowed based on an output voltage from a short-circuited pixel. The FPD detects X-ray images. The external information is transmitted from an imaging control device. The X-ray pulses are sequentially generated by an X-ray generating apparatus. A controller selects a pulse irradiation mode in a case where the detection of the rise of the X-ray pulse is allowed. If not, a successive irradiation mode is selected. In the pulse irradiation mode, the rise and the fall of the X-ray pulse are detected and timing of storage operation is synchronized with the detected timing of the rise. In the successive irradiation mode, the storage operation is performed at predetermined time intervals without the detection of the rise and the fall of the X-ray pulse.
Abstract:
An X-ray image detecting device has an FPD having a matrix of pixels each for accumulating signal charge in accordance with an X-ray irradiation amount. An imaging area of the FPD is partitioned into a plurality of divided sections A to I. Each of the divided sections A to I has a short pixel for detecting X-ray irradiation. In a synchronization control for controlling the FPD in synchronization with detection of a start of X-ray emission from an X-ray source, a control unit for controlling the X-ray image detecting device uses all the divided sections A to I. In an automatic exposure control for stopping the X-ray emission from the X-ray source by detecting a total X-ray irradiation amount, the control unit uses part of the divided sections, e.g. the short pixels of the divided sections that are judged to be opposed to an object in the synchronization control.
Abstract:
An X-ray imaging apparatus includes an FPD and short-circuited pixels. The FPD has pixels arranged in arrays for detecting an X-ray image. The short-circuited pixels detect a radiation dose of X-rays in the FPD. The X-ray imaging apparatus is changed over between first and second operating modes. The first operating mode is selected in case of combining with an X-ray generating apparatus with communication compatibility, and performs an exposure control for controlling a total radiation dose according to a detection signal from the short-circuited pixels. The second operating mode is selected in case of combining with an X-ray generating apparatus with communication incompatibility, and performs control of start synchronization for synchronizing operation of the FPD with the emission start of X-rays according to a detection signal from the short-circuited pixels. Thus, control of the X-ray imaging apparatus is changed over appropriately.
Abstract:
A flat panel detector has pixels for obtaining image signals and detective pixels for detecting the amount of incident x-rays. A signal processing circuit is of a pipeline-type, wherein first and second buffer memories are connected to the output of an A/D converter. In a dose detecting operation, the signal processing circuit repeats primary cycles alternately with secondary cycles of a shorter length than the primary cycles. In the primary cycle, a dose detection signal based on electric charges from the detective pixels is input in the first buffer memory and, simultaneously, a dummy signal is output from the second buffer memory. In secondary cycle, the dose detection signal is output from the first buffer memory and, simultaneously, a second dummy signal is input in the second buffer memory. On the basis of the dose detection signals, a start-of-radiation detector detects the start of x-ray radiation.
Abstract:
The present disclosure provides a radiation detection system, a radiation output device, and a radiation detection device. The radiation detection system includes a radiation output device having an output control unit, and a radiation detection device having a recognition unit that recognizes whether radiation has been output from the radiation output device on the basis of a radiation detection signal. The output control unit causes radiation to be output at a first intensity from a time point of the start of outputting of radiation, and then causes the radiation to be output at a second intensity. The first intensity is an intensity higher than the second intensity and satisfying a threshold value condition set in advance in the recognition unit. The recognition unit recognizes that a detection signal of the radiation with the first intensity satisfies the threshold value condition, thereby recognizing the start of outputting of the radiation.