Abstract:
A radiological image-capturing device includes: a first read control section that executes a first read mode in which electric signals stored in a plurality of pixels are read out simultaneously in units of a plurality of rows; and an emission-start determining section that determines that the emission of radiation from a radiation source onto an image-capturing panel has started when the values of the electric signals read by the first read control section have become greater than an arbitrarily settable threshold. If it is determined by the emission-start determining section that the emission of said radiation has started, the first read control section terminates the reading of the electric signals, and thereby brings the image-capturing panel into an exposure state.
Abstract:
Provided are a magnetic tape comprising a magnetic layer containing a ferromagnetic powder and a binding agent on a non-magnetic support, in which the magnetic layer contains an oxide abrasive, an average particle diameter of the oxide abrasive obtained from a secondary ion image acquired by irradiating a surface of the magnetic layer with a focused ion beam is 0.04 μm to 0.08 μm, and an absolute value ΔN of a difference between a refractive index Nxy measured with respect to an in-plane direction of the magnetic layer and a refractive index Nz measured with respect to a thickness direction of the magnetic layer is 0.25 to 0.40, and a magnetic recording and reproducing device including the magnetic tape.
Abstract:
A radiological image-capturing device includes: a first read control section that executes a first read mode in which electric signals stored in a plurality of pixels are read out simultaneously in units of a plurality of rows; and an emission-start determining section that determines that the emission of radiation from a radiation source onto an image-capturing panel has started when the values of the electric signals read by the first read control section have become greater than an arbitrarily settable threshold. If it is determined by the emission-start determining section that the emission of the radiation has started, the first read control section terminates the reading of the electric signals, and thereby brings the image-capturing panel into an exposure state.
Abstract:
Provided is a piezoelectric film having high piezoelectric performance. The piezoelectric film is a piezoelectric film including a piezoelectric layer consisting of a polymer-based piezoelectric composite material that contains piezoelectric particles in a matrix containing a polymer material, and electrode layers formed on both surfaces of the piezoelectric layer, in which the piezoelectric particles are particles containing lead zirconate titanate, and in a cross section of the piezoelectric layer in a thickness direction, a ratio of an area of a region where Pb/(Pb+Zr) is 90% or greater to an area of the lead zirconate titanate particles is in a range of 0.2% to 4%.
Abstract:
Provided is a piezoelectric film capable of realizing an electroacoustic conversion film with an excellent heat dissipation property, in which a sufficient sound pressure with respect to an input operating voltage is obtained. The piezoelectric film is a piezoelectric film including a polymer-based piezoelectric composite material which contains piezoelectric particles in a matrix containing a polymer material, electrode layers which are laminated on both surfaces of the polymer-based piezoelectric composite material, and a protective layer laminated on a surface of at least one electrode layer, in which in a case where a cross section of the piezoelectric film is observed with a scanning electron microscope, at least one electrode layer has a plurality of projections directed toward the protective layer, and the number of projections is in a range of 2 to 40 per visual field of 85 μm in the cross section.
Abstract:
Provided are a magnetic tape comprising a magnetic layer containing a ferromagnetic powder and a binding agent on a non-magnetic support, in which the magnetic layer contains an oxide abrasive, an average particle diameter of the oxide abrasive obtained from a secondary ion image acquired by irradiating a surface of the magnetic layer with a focused ion beam is 0.04 μm to 0.08 μm, and an absolute value ΔN of a difference between a refractive index Nxy measured with respect to an in-plane direction of the magnetic layer and a refractive index Nz measured with respect to a thickness direction of the magnetic layer is 0.25 to 0.40, and a magnetic recording and reproducing device including the magnetic tape.
Abstract:
Provided are a magnetic tape comprising a magnetic layer containing a ferromagnetic powder and a binding agent on a non-magnetic support, in which the magnetic layer contains an oxide abrasive, an average particle diameter of the oxide abrasive obtained from a secondary ion image acquired by irradiating a surface of the magnetic layer with a focused ion beam is greater than 0.08 μm and 0.14 μm or smaller, and an absolute value ΔN of a difference between a refractive index Nxy measured with respect to an in-plane direction of the magnetic layer and a refractive index Nz measured with respect to a thickness direction of the magnetic layer is 0.25 to 0.40, and a magnetic recording and reproducing device including the magnetic tape.
Abstract:
A radiological image-capturing device includes: a first read control section that executes a first read mode in which electric signals stored in a plurality of pixels are read out simultaneously in units of a plurality of rows; and an emission-start determining section that determines that the emission of radiation from a radiation source onto an image-capturing panel has started when the values of the electric signals read by the first read control section have become greater than an arbitrarily settable threshold. If it is determined by the emission-start determining section that the emission of the radiation has started, the first read control section terminates the reading of the electric signals, and thereby brings the image-capturing panel into an exposure state.
Abstract:
A portable X-ray imaging apparatus includes an electronic cassette for imaging of an X-ray image and transmitting the X-ray image wirelessly. An image receiving unit communicates with the electronic cassette and receives the X-ray image wirelessly. A passive monitoring device receives ambient electromagnetic waves to measure communication environment by passive monitoring. An active monitoring device performs data communication between the electronic cassette and the image receiving unit to measure the communication environment by active monitoring. Furthermore, an evaluation device detects a cause of a communication failure by considering a result of the passive monitoring and a result of the active monitoring. The evaluation device detects that the cause of the communication failure is a blocking object blocking radio waves or a relative position between the electronic cassette and the image receiving unit according to the results of the passive and active monitoring.