Abstract:
A load-following fuel cell system for a grid system operating with a high penetration of intermittent renewable energy sources includes a baseload power generation module and a load-following power generation module. The baseload power generation module provides a baseload power to the grid system and includes a high-efficiency fuel cell system. The high-efficiency fuel cell system includes a topping module and a bottoming module. The topping module and the bottoming module are connected in series and the topping module provides an exhaust stream to the bottoming module. The load-following power generation module provides a load-following power to the grid system and includes an energy storage system that separates and stores hydrogen contained in the exhaust stream and a power generation system having one or more fuel cells. The power generation system receives the hydrogen from the energy storage system to provide the load-following power.
Abstract:
A high efficiency fuel cell system comprising a topping fuel cell assembly comprising a topping cathode portion and a topping anode portion; and a bottoming fuel cell assembly comprising a bottoming cathode portion and a bottoming anode portion, wherein the bottoming anode portion receives anode exhaust output from the topping anode portion and the topping cathode portion receives cathode exhaust from the bottoming cathode portion, and wherein the topping fuel cell assembly has a greater number of fuel cells than the bottoming fuel cell assembly so that the topping fuel cell assembly utilizes more fuel than the bottoming fuel cell assembly.
Abstract:
An end cell assembly for a fuel cell stack includes an end plate and at least two inactive anode parts disposed adjacent to the end plate. Each inactive anode part comprises a nickel foam anode disposed directly above an anode current collector and a separator sheet disposed 5 above the nickel foam anode.
Abstract:
Disclosed here is a supported catalyst comprising a thermally stable core, wherein the thermally stable core comprises a metal oxide support and nickel disposed in the metal oxide support, wherein the metal oxide support comprises at least one base metal oxide and at least one transition metal oxide or rare earth metal oxide mixed with or dispersed in the base metal oxide. Optionally the supported catalyst can further comprise an electrolyte removing layer coating the thermally stable core and/or an electrolyte repelling layer coating the electrolyte removing layer, wherein the electrolyte removing layer comprises at least one metal oxide, and wherein the electrolyte repelling layer comprises at least one of graphite, metal carbide and metal nitride. Also disclosed is a molten carbonate fuel cell comprising the supported catalyst as a direct internal reforming catalyst.
Abstract:
A system for capturing carbon dioxide in flue gas includes a fuel cell assembly including at least one fuel cell including a cathode portion configured to receive, as cathode inlet gas, the flue gas generated by the flue gas generating device or a derivative thereof, and to output cathode exhaust gas and an anode portion configure to receive an anode inlet gas and to output anode exhaust gas, a fuel cell assembly voltage monitor configured to measure a voltage across the fuel cell assembly, and a controller configured to receive the measured voltage across the fuel cell assembly from the fuel cell assembly voltage monitor, determine an estimated carbon dioxide utilization of the fuel cell assembly based on the measured voltage across the fuel cell assembly, and reduce the carbon dioxide utilization of the fuel cell assembly when the determined estimated carbon dioxide utilization is above a predetermined threshold utilization.
Abstract:
A fuel cell system includes a fuel cell unit configured to generate an amount of electrical power for supply to a varying electrical load and a fuel cell controller configured to receive a first indication that the varying electrical load is at a local maximum within a predetermined period, and, in response, operate the fuel cell unit with an operational parameter having a first value such that the fuel cell unit produces a limited maximum amount of electrical power that is a predetermined percentage of a maximum rated power output of the fuel cell unit. The fuel cell controller is also configured to receive an indication that the varying electrical load has reduced, and, in response, operate the fuel cell unit with the operational parameter having a second value such that the fuel cell unit produces an amount of electrical power below the limited maximum amount of electrical power.
Abstract:
Disclosed here is a supported catalyst comprising a thermally stable core, wherein the thermally stable core comprises a metal oxide support and nickel disposed in the metal oxide support, wherein the metal oxide support comprises at least one base metal oxide and at least one transition metal oxide or rare earth metal oxide mixed with or dispersed in the base metal oxide. Optionally the supported catalyst can further comprise an electrolyte removing layer coating the thermally stable core and/or an electrolyte repelling layer coating the electrolyte removing layer, wherein the electrolyte removing layer comprises at least one metal oxide, and wherein the electrolyte repelling layer comprises at least one of graphite, metal carbide and metal nitride. Also disclosed is a molten carbonate fuel cell comprising the supported catalyst as a direct internal reforming catalyst.
Abstract:
A method for addressing electrical grid frequency changes by a fuel cell system includes measuring, by a frequency sensor, a frequency of an electrical grid, determining that the frequency of the electrical grid differs from a normal frequency of the electrical grid by a threshold, determining, based at least in part on the measured frequency, an AC power setpoint bias, applying a magnitude limit, a rate-of-change limit, and a duration limit to the determined AC power setpoint bias to generate a limited power setpoint bias, generating a frequency adjusted power setpoint based on the limited power setpoint bias, and providing the frequency adjusted power setpoint to one or more control modules of the fuel cell system such that the fuel cell system adjusts a power output based on a difference between the measured frequency and the normal frequency.
Abstract:
A high efficiency fuel cell system adapted to receive flue gas from a flue gas generating device and to capture carbon dioxide from the flue gas, the high efficiency fuel cell system comprising a topping fuel cell assembly comprising a topping cathode portion and a topping anode portion, a bottoming fuel cell assembly comprising a bottoming cathode portion and a bottoming anode portion, wherein the bottoming anode portion receives anode exhaust output from the topping anode portion, and a separation assembly configured to receive carbon dioxide-containing exhaust and to separate carbon dioxide from the carbon dioxide-containing exhaust, wherein the carbon dioxide-containing exhaust is one of anode exhaust output from the bottoming anode portion and a gas derived from the anode exhaust output from the bottoming anode portion, and wherein at least one of the topping cathode portion and the bottoming cathode portion receives at least a portion of the flue gas output from the flue gas generating device.
Abstract:
A high efficiency fuel cell system adapted to receive flue gas from a flue gas generating device and to capture carbon dioxide from the flue gas, the high efficiency fuel cell system comprising a topping fuel cell assembly comprising a topping cathode portion and a topping anode portion, a bottoming fuel cell assembly comprising a bottoming cathode portion and a bottoming anode portion, wherein the bottoming anode portion receives anode exhaust output from the topping anode portion, and a separation assembly configured to receive carbon dioxide-containing exhaust and to separate carbon dioxide from the carbon dioxide-containing exhaust, wherein the carbon dioxide-containing exhaust is one of anode exhaust output from the bottoming anode portion and a gas derived from the anode exhaust output from the bottoming anode portion, and wherein at least one of the topping cathode portion and the bottoming cathode portion receives at least a portion of the flue gas output from the flue gas generating device.