Abstract:
A wireless vehicle charging system includes at least one controller configured to operate an inverter to control a voltage input to a power converter in a vehicle to drive an impedance phase angle at an output of the inverter toward a predetermined angle and achieve a power demand at an output of the vehicle power converter. The at least one controller is further configured to operate the vehicle power converter to achieve the power demand. The at least one controller may control a frequency output of the inverter to adjust the voltage input to the power converter based on a rate of change of an objective function that is configured to reduce an output power error of the power converter and an impedance phase angle error at the output of the inverter.
Abstract:
A method includes measuring an impedance of a shunt as a function of frequency and converting the impedance to an admittance in a time domain. The method further includes connecting the shunt in a circuit and measuring voltage data across the shunt over a predetermined interval. The method includes outputting a signal indicative of a current through the shunt derived from the voltage data convolved with the admittance. The method may be implemented in a controller configured to interface with the shunt.
Abstract:
A wireless power transfer system includes a coil assembly including a pair of spaced apart inductive coils positioned on a same side of a ferrite pad, and a switching network. The switching network, in response to an indication of a corresponding inductive coil assembly configuration, selectively operates the coils in a two-pole mode or a three-pole mode.
Abstract:
A system includes a surge protection circuit electrically connected via a signal transmission line between a source and an oscilloscope, and including a diode configured to be reverse biased, responsive to a voltage of the source being less than a threshold, to decouple an impedance of the circuit from the transmission line and forward biased, responsive to the voltage being greater than the threshold, to couple the impedance to absorb excess energy of the voltage.
Abstract:
A vehicle includes a vehicle coil assembly configured to couple with a ground coil assembly in a presence of a magnetic field therebetween for wireless power transfer to the vehicle. The vehicle coil assembly includes an inflatable shield configured to extend from the vehicle and form a barrier around a portion of the magnetic field.
Abstract:
A wireless power transfer system has a coil assembly including a ferrite pad and a pair of spaced apart inductive coils on the ferrite pad, and a switching network that, in response to an indication of a corresponding inductive coil assembly configuration, controls a direction of current flow through each of the coils to selectively operate the coils in a two-pole mode or a three-pole mode.
Abstract:
A vehicle includes an inductive charge coupling arrangement that can be electrically connected with a traction battery. The arrangement includes a charge coil and a plurality of permeable panels surrounding the charge coil. The vehicle further includes at least one controller that, in response to an inductive charge request, causes the panels to move to positions selected to minimize electromagnetic field leakage between the charge coil and a charge station.