Abstract:
Thin polymer sheets and used thereof are described. A polymer sheet can include greater than 90 wt. % of a single-site catalyzed polyolefin (PO) and have a thickness of at least 0.0254 cm. The sheet can be used to produce molded articles.
Abstract:
Color-stable rheology controlled polyolefin compositions and methods of making are described. A color-stable rheology controlled polyolefin composition can include a controlled rheology grade thermoplastic polyolefin, and an effective amount of a trisamide-based compound that imparts color-stability to the composition. The color-stable solid-state thermoplastic polyolefin composition can have a Hunter b value color change (Δb) rate of ≤0.03/day when stored at 93° C. for 50 days.
Abstract:
A blown film composition including a first high density polyethylene component and a second high density polyethylene component, wherein the blown film contains a mixture of three or more discrete molecular weight distributions, and wherein the second high density polyethylene component has at least one more discrete molecular weight distribution than the first high density polyethylene component.
Abstract:
Disclosed is a polymeric composition containing at least 98 wt. % of a random ethylene polypropylene copolymer and 0.01 wt. % to 1.0 wt. % of an acid neutralizer. The random ethylene polypropylene copolymer includes 4 wt. % to 12 wt. % of ethylene units and 88 wt. % to 96 wt. % of propylene units based on the total weight of the copolymer. The polymeric composition has a haze value of less than 40% as measured in accordance with ASTM D-1003 and a notched Izod impact strength of greater than 3 ft-lb/in as measured in accordance with ASTM D-256. The polymeric composition can further comprise a clarifier. Methods of making the polymeric composition and articles containing the polymeric composition are also disclosed.
Abstract:
Color-stable rheology controlled polyolefin compositions and methods of making are described. A color-stable rheology controlled polyolefin composition can include a controlled rheology grade thermoplastic polyolefin, and an effective amount of a trisamide-based compound that imparts color-stability to the composition. The color-stable solid-state thermoplastic polyolefin composition can have a Hunter b value color change (Δb) rate of ≤0.03/day when stored at 93° C. for 50 days.
Abstract:
A process forming a high MFR polypropylene includes providing a reactor powder polypropylene, the reactor powder polypropylene having a melt flow rate of less than 100 dg/min. The process also includes mixing the reactor powder polypropylene with a free-radical initiator to form a powder/initiator mixture and subjecting the powder/initiator mixture to post-reactor forming. The present disclosure further provides for a vis-broken polypropylene and a polymer article.
Abstract:
An ISBM article is disclosed wherein the ISBM article is made from an HDPE resin having a MI2 of 0.1 to 5.0 dg/min as measured by ASTM D-1238; 190° C./2.16 kg, a density of from 0.940 to 0.970 g/cc as measured by ASTM D792, a peak molecular weight of greater than 40,000 g/mol and a zero shear viscosity between 15,000 and 250,000 Pa·sec.
Abstract:
A blown polypropylene film or sheet is disclosed. The film or sheet can include at least 95 wt. % of a polypropylene, and at least one β-nucleating agent or crystallization inhibitor, where the polypropylene blown film or sheet has a thickness of 0.5 mils to 15 mils, and where the polypropylene blown film has an increased dart impact strength, as measure by ASTM D1709, when compared with a second polypropylene blown film or sheet that has the same components in the same wt. % amounts as the polypropylene blown film or sheet except that the second polypropylene blown film or sheet does not include the at least one β-nucleating agent or crystallization inhibitor.
Abstract:
Disclosed is an injection stretch blow molded (ISBM) container containing a surface having a static coefficient of friction (COF) of 0.15 to 0.21, a dynamic COF of 0.06 to 0.1, wherein the surface retains a water contact angle of 76° or higher for up to three minutes after wetting of the surface with a water drop of 14 to 16 mm diameter and the container is made with a polymeric composition containing a high density polyethylene (HDPE) having a dispersity (Mw/Mn) of 9 or higher as measured by GPC; a MI2 of 1 g/10 min or higher as measured by ASTM D-1238; 190° C./2.16 kg, as measured by ASTM D-1238; and an environmental stress crack resistance (ESCR) at 100% Igepal of >150 hours as measured by ASTM D-1693, B.
Abstract:
A method of forming a thermoformed article may include melt extruding polyethylene to form an extruded sheet. The rheological breadth parameter of the polyethylene may change by no more than about 5% after extrusion relative to the rheological breadth parameter of the polyethylene prior to extrusion. The extruded sheet may be thermoformed within a mold to form the thermoformed article. During thermoforming, the extruded sheet may be subjected to solid-state stretching in one or more directions. The thermoformed article may be retrieved from the mold. The polyethylene may have a rheological breadth parameter of from 0.20 to 0.40, a multimodal molecular weight distribution, a polydispersity (Mw/Mn) of from 5 to 18, a density ranging from 0.940 to 0.970 g/cc, may exhibit tensile strain-hardening, or combinations thereof.