Abstract:
A controller that makes an electric motor efficiently operate in accordance with an ambient temperature. The controller includes a machine learning apparatus learning an operating command to the electric motor. The machine learning apparatus includes a status observing part and learning part. The status observing part observes an ambient temperature of an electric motor apparatus and a cycle time of the electric motor as status variables. The learning part learns an operating command to the electric motor in accordance with a training data set prepared based on a combination of the judgment data acquired by a judgment data acquiring part and the status variables.
Abstract:
A motor drive apparatus includes a converter configured to convert AC power of an AC power supply into DC power and outputs the DC power, a DC link unit including capacitors connected in series with each other, an inverter connected in parallel with the DC link unit, and configured to convert the DC power of the DC link unit into AC power for driving a motor, and outputs the AC power, and a short-circuit judgment unit configured to judge that at least one of the capacitors in the DC link unit has shorted in the case where, when the value of a voltage applied to a positive and negative bipolar terminal of the DC link unit is smaller than a first threshold, the value of an input current flowing from the AC power supply into the DC link unit via the converter is larger than a second threshold.
Abstract:
A diode includes an anode connected to the other ends of brake coils, and a cathode connected to one end of a smoothing capacitor. A diode includes an anode connected to the other end of the smoothing capacitor, and a cathode connected to one ends of the brake coils. By providing the diodes, energy stored in the brake coils, when at least one of an NPN type transistor and an NPN type transistor is in an on-state, is returned to the smoothing capacitor when the NPN type transistors are in an off-states.
Abstract:
A first switching element is connected to one end of a brake and switches from the off state to the on state when a switch command is input to cause a brake drive current to flow through the brake. A second switching element is connected to the other end of the brake and switches from the off state to the on state when the switch command is input to cause a brake drive current to flow through the brake. A voltage detection unit detects a brake voltage being applied to the brake. A switch command delay unit delays the switch command input to the first switching element. A short circuit determination unit determines whether or not a short circuit has occurred in the first switching element based on the brake voltage and the switch command delayed by the switch command delay unit.
Abstract:
A brake abnormality diagnosis device which diagnoses an abnormality in a brake of a brake-equipped motor provided in a robot or a machine tool, includes: an abnormality diagnosis unit which performs a diagnosis as to whether or not there is an abnormality in the brake, while the motor is excited and the brake is activated; and an output unit which, if it is diagnosed that there is an abnormality in the brake, notifies the abnormality in the brake without interrupting the excitation of the motor and without releasing the brake.
Abstract:
A servomotor drive device has a first converter, a regenerative resistor circuit having a first switching element and a regenerative resistor, a first connection part configured to connect a second converter in parallel to the regenerative resistor circuit in an attachable and detachable manner, and a first control unit configured to control the on and off states of the first switching element. The second converter has a second switching unit and a second control unit configured to return regenerative energy to an AC power source side by bringing the second switching element into the on state when the second converter is connected to the first connection part.
Abstract:
A machine learning apparatus according to the present invention, which learns the operation conditions of a cooling device for cooling a motor or a motor control apparatus, includes a state observer for observing a state variable including at least one of temperature data of the motor and the motor control apparatus at a specific position during operation of the cooling device; a determination data acquisition unit for acquiring determination data that determines a margin of acceptable value of a loss in each of the motor, the motor control apparatus, and the cooling device and a margin of acceptable value of the temperature of each of the motor and the motor control apparatus at the specific position; and a learner for learning the operation conditions of the cooling device in accordance with a training data set constituted of a combination of the state variable and the determination data.