Abstract:
A motor drive apparatus includes a converter configured to convert AC power of an AC power supply into DC power and outputs the DC power, a DC link unit including capacitors connected in series with each other, an inverter connected in parallel with the DC link unit, and configured to convert the DC power of the DC link unit into AC power for driving a motor, and outputs the AC power, and a short-circuit judgment unit configured to judge that at least one of the capacitors in the DC link unit has shorted in the case where, when the value of a voltage applied to a positive and negative bipolar terminal of the DC link unit is smaller than a first threshold, the value of an input current flowing from the AC power supply into the DC link unit via the converter is larger than a second threshold.
Abstract:
A resin molded substrate has at least a pair of terminal through holes for allowing lead terminals of a cylindrical capacitor to be inserted through, and at least one protrusion for supporting a side of a bottom portion of the capacitor so as to space from a front surface of the substrate the side of the bottom portion of the capacitor having the lead terminals inserted through the terminal through holes. The pair of lead terminals at the bottom portion are inserted through the terminal through holes of the resin molded substrate, whereby the capacitor is mounted in an upright state with a solder, so that the protrusion spaces the side of the bottom portion from the front surface of the resin molded substrate.
Abstract:
A resin molded substrate has at least a pair of terminal through holes for allowing lead terminals of a cylindrical capacitor to be inserted through, and at least one protrusion for supporting a side of a bottom portion of the capacitor so as to space from a front surface of the substrate the side of the bottom portion of the capacitor having the lead terminals inserted through the terminal through holes. The pair of lead terminals at the bottom portion are inserted through the terminal through holes of the resin molded substrate, whereby the capacitor is mounted in an upright state with a solder, so that the protrusion spaces the side of the bottom portion from the front surface of the resin molded substrate.
Abstract:
A motor drive device of the present invention includes: a rectification circuit configured to rectify an AC voltage; a power source unit configured to smooth a DC voltage by a capacitor; an inverter unit configured to drive a motor by converting a DC voltage into an AC voltage; a current detection unit configured to measure a current flowing through a resistor which is connected to a coil of the motor and the capacitor; a voltage detection unit configured to measure a value of a voltage across the capacitor; a second switch that grounds the capacitor; and an insulation resistance detection unit configured to detect an insulation resistance value of a motor by using two sets of a current value and a voltage value measured in two states where the second switch is turned off and turned on.
Abstract:
A monitoring device includes: an acquisition unit for acquiring a clock signal output from a communication circuit that outputs the clock signal; and a monitoring unit for analyzing the waveform of the clock signal acquired by the acquisition unit, based on a predetermined reference clock signal having a period equal to or shorter than a period of the clock signal to thereby determine whether or not there is a sign of malfunction in the communication circuit.
Abstract:
A connection member includes: a first short bar whose one end is attached to a first terminal block; a second short bar which extends in a longitudinal direction of the first short bar and whose one end is attached to a second terminal block, at least part of the other end of the second short bar overlapping the first short bar; and a guide member which is attached to an overlapping part of the first short bar and the second short bar and which allows the second short bar to move relative to the first short bar in the longitudinal direction while maintaining surface contact between the first short bar and the second short bar at the overlapping part.
Abstract:
A data reception unit carries out reception of data, which consists of a combination of switching noise resistant states and switching noise nonresistant states, over a fixed serial communication time a plurality of times for each fixed serial communication period same as the one or a plurality of the switching periods. A serial communication time setting unit sets the serial communication time different from one or a plurality of the switching periods, based on the switching period, the serial communication period, and the communication speed of the data communication device, so that the starts of all of the switching periods within the serial communication time are consistent with the time of reception of the switching noise resistant state at the time of at least one of the reception of the data among a plurality of times of the reception of the data.