摘要:
A transistor includes first and second pairs of vertically overlaid source/drain regions on a substrate. Respective first and second vertical channel regions extend between the overlaid source/drain regions of respective ones of the first and second pairs of overlaid source/drain regions. Respective first and second insulation regions are disposed between the overlaid source/drain regions of the respective first and second pairs of overlaid source/drain regions and adjacent respective ones of the first and second vertical channel regions. Respective first and second gate insulators are disposed on respective ones of the first and second vertical channel regions. A gate electrode is disposed between the first and second gate insulators. The first and second vertical channel regions may be disposed near adjacent edges of the overlaid source/drain regions.
摘要:
A memory device includes a first active region on a substrate and first and second source/drain regions on the substrate abutting respective first and second sidewalls of the first active region. A first gate structure is disposed on the first active region between the first and second source/drain regions. A second active region is disposed on the first gate structure between and abutting the first and second source/drain regions. A second gate structure is disposed on the second active region overlying the first gate structure.
摘要:
In a method of forming a pattern, a sacrificial layer pattern and a stop layer pattern for preventing or reducing an epitaxial growth may be formed on a substrate. The sacrificial layer pattern may have a first hole therethrough, and the first hole partially exposes a top surface of the substrate. At least one active pattern may be formed on a bottom and a sidewall of the first hole by performing a selective epitaxial growth process on the top surface of the substrate and a sidewall of the sacrificial layer pattern. The sacrificial layer pattern and the stop layer pattern for preventing or reducing the epitaxial growth may be removed from the substrate. The at least one active pattern formed by the above method may have a finer size and an improved shaped compared to a conventional active pattern formed by directly patterning layers using a photoresist pattern. Damages in a photolithography process may be prevented or reduced from being generated.
摘要:
Electromechanical non-volatile memory devices are provided including a semiconductor substrate having an upper surface including insulation characteristics. A first electrode pattern is provided on the semiconductor substrate. The first electrode pattern exposes portions of a surface of the semiconductor substrate therethrough. A conformal bit line is provided on the first electrode pattern and the exposed surface of semiconductor substrate. The bit line is spaced apart from a sidewall of the first electrode pattern and includes a conductive material having an elasticity generated by a voltage difference. An insulating layer pattern is provided on an upper surface of the bit line located on the semiconductor substrate. A second electrode pattern is spaced apart from the bit line and provided on the insulating layer pattern. The second electrode pattern faces the first electrode pattern. Related methods are also provided.
摘要:
A transistor includes first and second pairs of vertically overlaid source/drain regions on a substrate. Respective first and second vertical channel regions extend between the overlaid source/drain regions of respective ones of the first and second pairs of overlaid source/drain regions. Respective first and second insulation regions are disposed between the overlaid source/drain regions of the respective first and second pairs of overlaid source/drain regions and adjacent respective ones of the first and second vertical channel regions. Respective first and second gate insulators are disposed on respective ones of the first and second vertical channel regions. A gate electrode is disposed between the first and second gate insulators. The first and second vertical channel regions may be disposed near adjacent edges of the overlaid source/drain regions.
摘要:
In a method of manufacturing a semiconductor device, an active channel pattern is formed on a substrate. The active channel pattern includes preliminary gate patterns and single crystalline silicon patterns that are alternately stacked with each other. A source/drain layer is formed on a sidewall of the active channel pattern. Mask pattern structures including a gate trench are formed on the active channel pattern and the source/drain layer. The patterns are selectively etched to form tunnels. The gate trench is then filled with a gate electrode. The gate electrode surrounds the active channel pattern. The gate electrode is protruded from the active channel pattern. The mask pattern structures are then removed. Impurities are implanted into the source/drain regions to form source/drain regions. A silicidation process is carried out on the source/drain regions to form a metal silicide layer, thereby completing a semiconductor device having a MOS transistor.
摘要:
A transistor includes first and second pairs of vertically overlaid source/drain regions on a substrate. Respective first and second vertical channel regions extend between the overlaid source/drain regions of respective ones of the first and second pairs of overlaid source/drain regions. Respective first and second insulation regions are disposed between the overlaid source/drain regions of the respective first and second pairs of overlaid source/drain regions and adjacent respective ones of the first and second vertical channel regions. Respective first and second gate insulators are disposed on respective ones of the first and second vertical channel regions. A gate electrode is disposed between the first and second gate insulators. The first and second vertical channel regions may be disposed near adjacent edges of the overlaid source/drain regions.
摘要:
A multibit electro-mechanical memory device comprises a substrate, a bit line on the substrate, a first interlayer insulating film on the bit line, first and second lower word lines on the first interlayer insulating film, the first and second lower word lines separated horizontally from each other by a trench, a spacer abutting a sidewall of each of the first and second lower word lines, a pad electrode inside a contact hole, first and second cantilever electrodes suspended over first and second lower voids that correspond to upper parts of the first and second lower word lines provided in both sides on the pad electrode, the first and second cantilever electrodes being separated from each other by the trench, and being curved in a third direction that is perpendicular to the first and second direction; a second interlayer insulating film on the pad electrode, first and second trap sites supported by the second interlayer insulating film to have first and second upper voids on the first and second cantilever electrodes, and first and second upper word lines on the first and second trap sites.
摘要:
A memory device includes a first active region on a substrate and first and second source/drain regions on the substrate abutting respective first and second sidewalls of the first active region. A first gate structure is disposed on the first active region between the first and second source/drain regions. A second active region is disposed on the first gate structure between and abutting the first and second source/drain regions. A second gate structure is disposed on the second active region overlying the first gate structure.
摘要:
In a method of manufacturing a semiconductor device, an active channel pattern is formed on a substrate. The active channel pattern includes preliminary gate patterns and single crystalline silicon patterns that are alternately stacked with each other. A source/drain layer is formed on a sidewall of the active channel pattern. Mask pattern structures including a gate trench are formed on the active channel pattern and the source/drain layer. The patterns are selectively etched to form tunnels. The gate trench is then filled with a gate electrode. The gate electrode surrounds the active channel pattern. The gate electrode is protruded from the active channel pattern. The mask pattern structures are then removed. Impurities are implanted into the source/drain regions to form source/drain regions. A silicidation process is carried out on the source/drain regions to form a metal silicide layer, thereby completing a semiconductor device having a MOS transistor.