Abstract:
The invention relates to a pipetting apparatus, for pipetting a fluid sample in accordance with at least one mode of operation of the pipetting apparatus, which is controlled by an operating parameter set, which is associated with a corresponding mode of operation, wherein the electric control device of the pipetting apparatus is designed to automatically store the at least one parameter value set determined by the user to be the at least one historic parameter value set for this mode of operation in the memory device, and is designed to provide, after the operating parameter set for this mode of operation has changed, the at least one automatically stored historic parameter value set for this mode of operation again for the subsequent control of the at least one, same, pipetting process. The invention also relates to a method for operating the pipetting apparatus.
Abstract:
A multichannel pipette with a base body, several spigots for clamping up pipette tips, arranged parallel side by side in a row, protruding from the base body and mounted on the base body so as to be movable in their longitudinal direction, at least one displacement equipment with a displacement chamber and a displacement member dislocatable therein, wherein the displacement chamber is connected to connection holes in the spigots in order to eject or aspirate air through openings of the connection holes in lower ends of the spigots, a first drive device, connected to the displacement member and adapted to dislocate the displacement member in the displacement chamber, first spring elements, engaging on the spigots and on the base body, wherein the spigots are dislocatable upward in their longitudinal direction from a starting position against the spring action of the first spring elements.
Abstract:
A multichannel pipette with a base body, several spigots for clamping up pipette tips, arranged parallel side by side in a row, protruding from the base body and mounted on the base body so as to be movable in their longitudinal direction, at least one displacement equipment with a displacement chamber and a displacement member dislocatable therein, wherein the displacement chamber is connected to connection holes in the spigots in order to eject or aspirate air through openings of the connection holes in lower ends of the spigots, a first drive device, connected to the displacement member and adapted to dislocate the displacement member in the displacement chamber, first spring elements, engaging on the spigots and on the base body, wherein the spigots are dislocatable upward in their longitudinal direction from a starting position against the spring action of the first spring elements.