Abstract:
Disclosed are a function split structure for a mobile convergence optical transmission network and a method of providing coordinated multi-point technology using the same. The mobile convergence optical transmission network may include a centralized unit (CU), a distributed unit (DU) connected to the CU, a transport node (TN) of an optical transmission network connected to the DU via a first interface, an aggregated unit (AU) connected to a transport unit (TU) of the optical transmission network via the first interface, and a radio unit (RU) connected to the AU via a second interface corresponding to a split structure for a lower layer than the first interface.
Abstract:
Provided are an apparatus and a method for allocating a bandwidth for providing a low-latency fronthaul service in a passive optical network. An bandwidth allocating method performed by a bandwidth allocating apparatus included in an OLT includes receiving an actual report message requesting bandwidth allocation from at least one ONU for wired subscribers connected to the OLT, receiving radio scheduling information for at least one ONU for mobile connected to the OLT from a central unit (CU)/digital unit (DU), generating a virtual report message using the radio scheduling information received from the CU/DU, allocating a transmission bandwidth for the at least one ONU for wired subscribers and the at least one ONU for mobile through the received actual report message and the generated virtual report message, and transmitting the allocated transmission bandwidth to the ONU for wired subscribers and the ONU for mobile using a grant message.
Abstract:
A traffic control method and apparatus for solving service quality degradation caused by traffic overhead in a specific node, on which traffic is concentrated in the specific node because of traffic congestion in a software defined network (SDN) environment. A traffic control method to be performed by an SDN controller of an SDN environment includes: collecting real-time traffic state information of a network; detecting traffic overhead of at least one node on the basis of the collected real-time traffic state information; determining whether network resources are available to the at least one node where the traffic overhead is detected; and changing a service level agreement (SLA)-based bandwidth allowable capacity with regard to the at least one node in accordance with available network resources.
Abstract:
A wired/wireless converged media access control (MAC) adaptor and a method for transmitting a frame using the same. The wired/wireless converged MAC adaptor may include a service network interface (SNI) to transmit a MAC frame corresponding to a wired or wireless service, or common public radio interface (CPRI) data, a frame conversion unit to convert, into an orthogonal frequency division multiplexing (OFDM) frame, a wired/wireless converged MAC frame having a common frame structure of the MAC frame corresponding to the wired or wireless service or the CPRI data, and an OFDM interface configured to transmit the OFDM frame to an optical OFDM modem by dynamically allocating sub-carriers based on data transmission characteristics.
Abstract:
An integrated dynamic bandwidth allocation method and apparatus in a passive optical network (PON) are provided. The bandwidth allocation method performed by an optical line terminal (OLT) includes generating a service level agreement (SLA) table including an SLA required for calculation for bandwidth allocation corresponding to at least one service queue included in at least one optical network unit (ONU) connected to the OLT, calculating maximum allocatable bandwidths for respective predetermined cycles based on the generated SLA table, and, when a service queue requiring bandwidth allocation is present in the ONU, performing bandwidth allocation according to different bandwidth allocation methods based on a priority level of the service queue using the calculated maximum allocatable bandwidths.
Abstract:
A method of registering an optical network unit (ONU) in an optical line terminal (OLT). The OLT determines a lane to be used by the ONU based on a transmission rate supported by the ONU, combines or distributes data of a dataflow based on a rate of the lane by comparing the rate of the lane to a rate of the dataflow of a media access control (MAC) client interface, and, when the OLT and the ONU are connected through multiple lanes, transmits and receives data between the OLT and the ONU through channel bonding for more effective use of a network.
Abstract:
Disclosed is a method of registering a new optical network unit (ONU) to be performed by an optical line terminal (OLT). The method includes transmitting a ranging notification message to a centralized unit (CU)/distributed unit (DU) to register the new ONU, receiving scheduling information for registering the new ONU from the CU/DU in response to the ranging notification message, transmitting a serial number request message to a service region in which ONUs are present based on the received scheduling information, and when the serial number response message is received from the new ONU in response to the serial number request message, registering the new ONU that transmits a serial number request message. The transmitting of the serial number request message is performed through a multi-quiet zone of a short period.
Abstract:
A cooperative dynamic bandwidth allocation (CO-DBA) method in a structure in which a mobile network and an optical access network are combined allows the mobile network and the optical access network to share mobile scheduling information in advance and allocate bandwidths in advance, and thus prevent a latency in upstream transmission of mobile traffic.
Abstract:
A method of tuning a wavelength in a TWDM-PON which has a plurality of operable channels is provided. First, a second channel is added as an operating channel of the TWDM-PON in which at least a first channel is working, and then an OLT that is providing a service to an ONU through the first channel requests the ONU to tune to the second channel. In response to receiving the request, the ONU determines whether a downstream wavelength of the second channel has been recorded thereon. According to the determination result, the ONU sends to the OLT an ACK message that indicates that the ONU is able to perform wavelength tuning and then commences wavelength tuning to the second channel, or the ONU sends to the OLT a NACK message that indicates that the ONU is unable to perform wavelength tuning.
Abstract:
Provided are a power management method and apparatus of an ONU supporting a slicing function. A power management method performed by a power management apparatus of an ONU supporting a slicing function includes receiving a first message for discovering a power management attribute of an ONU including at least one slice from an optical line terminal (OLT), transmitting a second message including the power management attribute of the ONU to the OLT in response to the first message received, receiving a third message for setting up a power management parameter for each slice included in the ONU from the OLT, setting up the power management parameter for each slice included in the ONU based on the third message received, and transmitting a fourth message including a set up result of the power management parameter for each slice included in the ONU to the OLT.