Abstract:
Provided is an image sensor. The image sensor includes a pixel array including pixels arranged along a first direction and a second direction, and partitioned into blocks, a converter configured to convert image signals outputted from the pixels into digital signals based on an image, and an image signal processor configured to add amplitudes of the digital signals belonging to each of the blocks to determine edge blocks among the blocks, compare the amplitudes of the digital signals to determine directions in which direction lines of the edge blocks are directed, and connect the direction lines to extract an edge of the image.
Abstract:
Disclosed is a digital phase-locked-loop including: a time-to-digital converter (TDC) configured to output a digital bit based on an input clock and a reference clock, in which the TDC includes: a first arbiter group configured to compensate for a phase difference between the input clock and the reference clock with a first average offset and output a first logic value; a second arbiter group configured to compensate for a phase difference between the input clock and the reference clock with a second average offset and output a second logic value; and a signal processor configured to output the digital bit based on the first and second logic values.
Abstract:
The inventive concept relates to a wireless communication receiver. The wireless communication receiver includes a second off-chip RF filter, an RF-to-digital converter and a digital pre-processor processing a signal converted into a digital. The RF-to-digital converter converts an RF signal being received into a digital signal of DC frequency band or intermediate frequency band and has a dynamic range that can process a wanted RF band signal and unwanted signals near to the wanted RF band signal. The digital pre-processor digitally controls a signal gain to transmit it to a modulator/demodulator.
Abstract:
An electronic device includes first to n-th cells (‘n’ is an integer of 2 or more) that receive spatial-temporal input signals that indicate an event unit in a time window, a summation circuit that sums first to n-th cell signals recorded in the first to n-th cells for each of first to m-th unit times (‘m’ is an integer of 2 or more) dividing the time window to generate first to m-th summation signals, and an encoding circuit that compares each of the first to m-th summation signals with a threshold value to encode the spatial-temporal input signals into a code of the event unit.