摘要:
The invention relates to a process for preparing chlorosilanes of the general formula H4-nSiCln with n=1, 2, 3, and/or 4, the process being characterized in that silicon in a silicon bed is reacted with Cl2 or HCl and with at least one silicon-containing compound in a reactor.
摘要:
The invention relates to a process for treating a substantially water-containing amino-functional, polymeric catalyst precursor while retaining the inner porous structure thereof and the outer spherical form thereof to form a catalyst, in which the catalyst precursor is treated at mild temperatures and under reduced pressure to prepare a catalyst having a water content below 2.5% by weight. The process is preferably integrated into an industrial scale process for preparing dichlorosilane, monosilane, silane, or solar silicon or semiconductor silicon from silanes.
摘要:
The present invention relates to a process for preparing trichlorosilane and optionally, if required, HCDS and OCTS, by a) in a first step, allowing silicon tetrachloride and silicon to react at a temperature of >800 to 1450° C., b) in a step two, cooling the product stream (PS) thus obtained from step one to obtain a product stream (PG2), c) optionally, in a step three, removing STC and HCDS from the product stream (PG2) to obtain, as a residue or bottom product, a product mixture (PG3), d) optionally, in a step four, removing OCTS from the product stream PG3 from step three, to obtain, as a residue or bottom product, a product mixture (PG4), e) in a step five, reacting the product stream (PG2) originating from step two or the product mixture (PG3) originating from step three or the product mixture (PG4) originating from step four, or a mixture of product streams PG2 and PG3 or a mixture of product streams PG2 and PG4 with hydrogen chloride to obtain a product stream (PHS), and f) in a subsequent step six, removing trichlorosilane from a product stream (PHS) thus obtained, and discharging the remaining STC-containing bottoms or recycling them as a reactant component into step one of the process.
摘要:
The invention relates to a complete method for producing pure silicon that is suitable for use as solar-grade silicon, comprising the reduction of a purified silicon oxide using one or more pure carbon sources, the purified silicon oxide, which was purified as silicon oxide dissolved in an aqueous phase, having a content of other polyvalent metals or metal oxides, in relation to the silicon oxide, of less than or equal to 300 ppm, preferably less than 100 ppm, especially preferably less than 50 ppm and according to the invention less than 10 ppm of the other metals and being obtained advantageously by gel formation in alkaline conditions. The invention also relates to a formulation containing an activator and to the use of purified silicon oxide together with an activator for producing silicon.
摘要:
The invention relates to a plant for carrying out chemical processes comprising at least means for directly carrying out the conversion in the form of means for developing products and/or in the form of at least one reactor for the continuous industrial manufacture of products, devices for receiving and/or providing starting materials and/or products and devices for controlling the conversion, which are combined to a single integrated and transportable functional unit serving as infrastructure, preferably in the form of a standardised transport container.
摘要:
The present invention relates to a specific process for preparing organosilane esters of the formula (I) and a composition comprising more than 98% by weight of organosilane esters of the formula (I) and less than 2.0% by weight of at least one hydrocarbon and to the use of such a composition as precursor for producing a layer or film having a dielectric constant of 1
摘要:
The invention relates to a process for dismutating at least one halosilane and reducing the content of extraneous metal and/or a compound containing extraneous metal in the at least one halosilane and in the at least one silane obtained, by contacting at least one halosilane of the general formula I, HnSiClm (I), where n and m are integers and n=1, 2 or 3 and m=1, 2 or 3 and n+m=4, with a particulate, organic, amino-functional resin to obtain at least one silane of the general formula II, HaSiClb (II), where a and b are integers and a=0, 2, 3 or 4 and b=0, 1, 2 or 4 where a+b=4, in one step, in which the content of extraneous metal and/or compounds containing extraneous metal has been reduced compared to the halosilane of the formula I. The invention further provides for the use of this resin for dismutating halosilanes and as an absorbent of extraneous metals or compounds containing extraneous metal in a process for preparing monosilane.
摘要:
The invention relates to storage-stable solutions of carbonated magnesium ethylate of the formula Mg(C.sub.2 H.sub.5 O).sub.2 (CO.sub.2).sub.n in ethanol and processes for their preparation, wherein (1) the magnesium content of the solution is 2.5 to 6% by weight, based on the total solution, and the CO.sub.2 content (n) is 1.55 to 1.85, (2) the magnesium content of the solution is 1.5 to 2.5% by weight, based on the total solution, and the CO.sub.2 content (n) being 1.55 to 1.90 or (3) the magnesium content of the solution is less than 1.5% by weight, based on the total solution, and the CO.sub.2 content (n) is 1.55 to 2.2.
摘要:
Di-tert.butoxydiacetoxysilane is prepared by reacting tetraacetoxysilane with tert.butanol at a reaction temperature of up to 60.degree. C., and the resulting di-tert.butoxydiacetoxysilane is isolated.
摘要:
The invention relates to a process for preparing monochlorosilane by reaction of monosilane and dichlorosilane in the presence of a catalyst. In the process of the invention, monochlorosilane is formed by comproportionation of monosilane and dichlorosilane. The invention further relates to the use of the monochlorosilane produced and also a plant for carrying out the process.