摘要:
A magnetic field sensor includes a plurality of transducer legs coupled together as a first circuit to sense a magnetic field, wherein each transducer leg comprises a plurality of magnetoresistance sense elements. The magnetic field sensor also includes a second circuit including a first plurality of current lines, wherein each current line of the first plurality of current lines is adjacent to a corresponding plurality of magnetoresistance sense elements of a transducer leg of the plurality of transducer legs. When at least one current line of the first plurality of current lines is energized, a magnetization of each magnetoresistance sense element of the transducer leg is aligned in a first direction or a second direction opposite to the first direction. A routing pattern of the at least one current line is configured to generate an equal population of magnetoresistance sense elements with magnetization aligned in the first and second directions.
摘要:
A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output comprising a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
摘要:
A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor provides a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
摘要:
A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output including a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
摘要:
A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output including a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
摘要:
A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor includes a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a current source to receive the bipolar current pulse. The field sensor has an output including a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.
摘要:
A magnetic field sensor includes a plurality of transducer legs coupled together as a first circuit to sense a magnetic field, wherein each transducer leg comprises a plurality of magnetoresistance sense elements. The magnetic field sensor also includes a second circuit including a first plurality of current lines, wherein each current line of the first plurality of current lines is adjacent to a corresponding plurality of magnetoresistance sense elements of a transducer leg of the plurality of transducer legs. When at least one current line of the first plurality of current lines is energized, a magnetization of each magnetoresistance sense element of the transducer leg is aligned in a first direction or a second direction opposite to the first direction. A routing pattern of the at least one current line is configured to generate an equal population of magnetoresistance sense elements with magnetization aligned in the first and second directions.
摘要:
A magnetic field sensor includes a plurality of transducer legs coupled together as a first circuit to sense a magnetic field, wherein each transducer leg comprises a plurality of magnetoresistance sense elements. The magnetic field sensor also includes a second circuit including a first plurality of current lines, wherein each current line of the first plurality of current lines is adjacent to a corresponding plurality of magnetoresistance sense elements of a transducer leg of the plurality of transducer legs. When at least one current line of the first plurality of current lines is energized, a magnetization of each magnetoresistance sense element of the transducer leg is aligned in a first direction or a second direction opposite to the first direction. A routing pattern of the at least one current line is configured to generate an equal population of magnetoresistance sense elements with magnetization aligned in the first and second directions.