摘要:
There is provided a process for manipulating the amount of alkyl alcohol in a product stream, e.g., such as an alkylene oxide product stream. More particularly, and in contrast to conventional processes wherein substantially all of the alkyl alcohol must be separated and desirably recycled, in the present process, a greater amount of alkyl alcohol may be allowed to remain in a partially refined alkylene oxide product stream. The residual alkyl alcohol is subsequently substantially entirely reacted to form a downstream product, e.g., a glycol ether, which is more easily separated from the alkylene oxide product stream. Indeed, the amount of alkyl alcohol in the partially refined alkylene oxide product stream can be selected based upon the output of glycol ethers, if desired.
摘要:
A thin film composite polyamide membrane including a porous support and a thin film polyamide layer which is a reaction product of m-phenylene diamine (mPD) and trimesoyl chloride (TMC), wherein the membrane is characterized by the thin film polyamide layer having a dissociated carboxylic acid content of at least 0.18 moles/kg at pH 9.5, and wherein pyrolysis of the thin film polyamide layer at 650 C results in a ratio of responses from a flame ionization detector for fragments produced at 212 m/z and 237 m/z of less than 2.8.
摘要:
A method for making a composite polyamide membrane including the step of applying a polyfunctional amine monomer and polyfunctional acyl halide monomer to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the method is characterized by: i) conducting the interfacial polymerization in the presence of an aromatic anhydride monomer include at least one sulfonyl halide functional group, or ii) applying the aromatic anhydride monomer to the thin film polyamide layer.
摘要:
A method for making a composite polyamide membrane comprising a porous support and a thin film polyamide layer, wherein the method includes the step of applying a polyfunctional amine monomer and polyfunctional acyl halide monomer to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the step of applying the polyfunctional acyl halide monomer to the porous support includes the step of combining the polyfunctional acyl halide monomer with a non-polar solvent at a concentration of at least 0.18 weight percent to form a coating solution which is applied to the surface of the porous support, and wherein the interfacial polymerization is conducted in the presence of a tri-hydrocarbyl phosphate compound which is provided in a molar ratio of at least 0.5:1 with the polyfunctional acyl halide monomer. Many additional embodiments are described including membranes made from the subject method and applications for such membranes.
摘要:
A method for making a composite polyamide membrane comprising a porous support and a thin film polyamide layer, wherein the method includes the step of applying a polyfunctional amine monomer and polyfunctional acyl halide monomer to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the step of applying the polyfunctional acyl halide monomer to the porous support includes the step of combining the polyfunctional acyl halide monomer with a non-polar solvent at a concentration of at least 0.18 weight percent to form a coating solution which is applied to the surface of the porous support, and wherein the interfacial polymerization is conducted in the presence of a tri-hydrocarbyl phosphate compound which is provided in a molar ratio of at least 0.5:1 with the polyfunctional acyl halide monomer. Many additional embodiments are described including membranes made from the subject method and applications for such membranes.
摘要:
A method for making a composite polyamide membrane comprising a porous support and a thin film polyamide layer, wherein the method includes the steps of applying a polar solution comprising a polyfunctional amine monomer and a non-polar solution comprising a polyfunctional acyl halide monomer to a surface of a porous support and interfacially polymerizing the monomers to form a thin film polyamide layer. The method is characterized by including a substituted benzamide monomer within the non-polar solution.
摘要:
A process for selectively preparing dihydroxyethyl piperazine by reacting hydroxyethyloxazolidinone with an acid catalyst wherein the selectivity of hydroxyethyloxazolidinone to dihydroxyethyl piperazine is at least 55%.
摘要:
A method for making a composite polyamide membrane including a porous support and a thin film polyamide layer, wherein the method includes the step of applying a polyfunctional amine monomer and a tetraacyl acyl halide monomer represented by Formula (I) to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer; wherein A is selected from: oxygen (—O—); carbon (—C—); silicon (—Si—); each of which may be unsubstituted or substituted, e.g. with alkyl groups of 1-4 carbon atoms; or a carbonyl group (—C(O)—), X is the same or different and is selected from a halogen, and Y is selected from halogen and hydroxide.
摘要:
A thin film composite membrane including a porous support and a thin film polyamide layer characterized by having a dissociated carboxylate content of at least 0.45 moles/kg at pH 9.5 and a method for making a composite polyamide applying a polar solution comprising a polyfunctional amine monomer and a non-polar solution comprising a polyfunctional amine-reactive monomer to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the method is characterized by the non-polar solution comprising at least 0.025 wt % of an acid compound including at least one carboxylic acid moiety and at least one amine-reactive moiety selected from acyl halide and anhydride.
摘要:
A bioreactor assembly for treating feed water including: i) a pressure vessel comprising an inner peripheral surface defining an inner chamber having a cross-sectional area, and a first and second port adapted to provide fluid access with the inner chamber, ii) a plurality of bioreactors located within the inner chamber, wherein each bioreactor includes an outer periphery and flow channels extending along bio-growth surfaces from an inlet region to an outlet region, and iii) a fluid flow pathway adapted for connection to a source of feed water and extending from the first port of the pressure vessel, along a parallel flow pattern to each bioreactor, into the flow channels of each bioreactor, and out the second port of the pressure vessel.