Abstract:
Systems and methods for transmitting video frames are described. Specifically, frame rate modification techniques such as blending and/or packing processes are used to translate high frame-rate signals into low-frame rate signals, which are transmitted over limited bandwidth transmission media to a video signal receiver. Information pertaining to the blending and/or packing processes is transferred to the video signal receiver in the form of a map that is used to reconstruct the high frame-rate signals from the low-frame rate signals. The high frame-rate signals may be used by certain types of newer equipment designed to use such signals. However, legacy equipment that cannot use the high frame-rate signals may opt to use certain embodiments described herein that are designed to be backward-compatible. When backward-compatible, the video signal receiver generates suitable low frame-rate signals as well as the high frame-rate signals, thereby accommodating both legacy as well as newer equipment.
Abstract:
Compression transforming video into a compressed representation (which typically can be delivered at a capped pixel rate compatible with conventional video systems), including by generating spatially blended pixels and temporally blended pixels (e.g., temporally and spatially blended pixels) of the video, and determining a subset of the blended pixels for inclusion in the compressed representation including by assessing quality of reconstructed video determined from candidate sets of the blended pixels. Trade-offs may be made between temporal resolution and spatial resolution of regions of reconstructed video determined by the compressed representation to optimize perceived video quality while reducing the data rate. The compressed data may be packed into frames. A reconstruction method generates video from a compressed representation using metadata indicative of at least one reconstruction parameter for spatial regions of the reconstructed video.
Abstract:
Systems and methods for transmitting video frames are described. Specifically, frame rate modification techniques such as blending and/or packing processes are used to translate high frame-rate signals into low-frame rate signals, which are transmitted over limited bandwidth transmission media to a video signal receiver. Information pertaining to the blending and/or packing processes is transferred to the video signal receiver in the form of a map that is used to reconstruct the high frame-rate signals from the low-frame rate signals. The high frame-rate signals may be used by certain types of newer equipment designed to use such signals. However, legacy equipment that cannot use the high frame-rate signals may opt to use certain embodiments described herein that are designed to be backward-compatible. When backward-compatible, the video signal receiver generates suitable low frame-rate signals as well as the high frame-rate signals, thereby accommodating both legacy as well as newer equipment.