Abstract:
Amplifiers, notably multi-stage amplifiers, such as linear regulators (e.g. low-dropout regulators) configured to provide a constant output voltage subject to load transients are presented. An amplifier is described, which comprises a first amplification stage configured to provide an intermediate voltage, based on an outer feedback voltage and based on a reference voltage. Furthermore, the amplifier comprises an output stage configured to provide a load current at an output voltage based on the intermediate voltage. In addition, the amplifier comprises an outer feedback circuit configured to derive the outer feedback voltage from the output voltage. The output stage comprises a buffer configured to provide a drive voltage based on the intermediate voltage and based on an inner feedback voltage derived from the output voltage. The buffer comprises a pass device which is configured to provide the load current at the output voltage based on the drive voltage.
Abstract:
A method and system for limiting the slew rate of the output voltage of one or more high side (HS) NMOS power switches is disclosed. A circuit arrangement configured to control a first NMOS switch is described. The arrangement comprises voltage provisioning means configured to supply a gate voltage to a gate terminal of the first NMOS switch; current provisioning means configured to provide a current; a first control stage configured to provide and/or remove a connection between the gate terminal of the first NMOS switch and the voltage provisioning means, thereby switching the first NMOS switch to an on-state and/or an off-state, respectively; and a first feedback control link between an output terminal of the first NMOS switch and the current provisioning means configured to control the slew-rate of a voltage at the first output terminal.
Abstract:
Amplifiers, notably multi-stage amplifiers, such as linear regulators (e.g. low-dropout regulators) configured to provide a constant output voltage subject to load transients are presented. An amplifier is described, which comprises a first amplification stage configured to provide an intermediate voltage, based on an outer feedback voltage and based on a reference voltage. Furthermore, the amplifier comprises an output stage configured to provide a load current at an output voltage based on the intermediate voltage. In addition, the amplifier comprises an outer feedback circuit configured to derive the outer feedback voltage from the output voltage. The output stage comprises a buffer configured to provide a drive voltage based on the intermediate voltage and based on an inner feedback voltage derived from the output voltage. The buffer comprises a pass device which is configured to provide the load current at the output voltage based on the drive voltage.
Abstract:
The present document relates to a current sensing and/or control circuit with reduced sensing errors. A current control circuit for controlling a load current into an electronic device is described. The current control circuit comprises an array of control transistors configured to adjust the load current provided at an output of the array of control transistors. The load current is drawn from a power supply at an input voltage. Furthermore, the power supply is coupled to an input of the array of control transistors. The circuit further comprises a reference transistor coupled to the power supply at an input of the reference transistor and a reference current source configured to draw a reference current at an output of the reference transistor.
Abstract:
Circuits and methods to control current through a device biasing an output device in case the supply voltage is not higher than the output voltage are disclosed. The circuits and methods are applicable to e.g. LDOs, amplifiers, or buffers. A control loop detects if the supply voltage is not higher than the output voltage and regulates the drain-source voltage of the biasing device. The disclosure reduces power consumption in a driver stage in case the supply voltage is not higher than the output voltage.
Abstract:
A method and system for limiting the slew rate of the output voltage of one or more high side (HS) NMOS power switches is disclosed. A circuit arrangement configured to control a first NMOS switch is described. The arrangement comprises voltage provisioning means configured to supply a gate voltage to a gate terminal of the first NMOS switch; current provisioning means configured to provide a current; a first control stage configured to provide and/or remove a connection between the gate terminal of the first NMOS switch and the voltage provisioning means, thereby switching the first NMOS switch to an on-state and/or an off-state, respectively; and a first feedback control link between an output terminal of the first NMOS switch and the current provisioning means configured to control the slew-rate of a voltage at the first output terminal.
Abstract:
Circuits and methods to control current through a device biasing an output device in case the supply voltage is not higher than the output voltage are disclosed. The circuits and methods are applicable to e.g. LDOs, amplifiers, or buffers. A control loop detects if the supply voltage is not higher than the output voltage and regulates the drain-source voltage of the biasing device. The disclosure reduces power consumption in a driver stage in case the supply voltage is not higher than the output voltage.
Abstract:
Circuits and methods to control current through a device biasing an output device in case the supply voltage is not higher than the output voltage are disclosed. The circuits and methods are applicable to e.g. LDOs, amplifiers, or buffers. A control loop detects if the supply voltage is not higher than the output voltage and regulates the drain-source voltage of the biasing device. The disclosure reduces power consumption in a driver stage in case the supply voltage is not higher than the output voltage.
Abstract:
The present document relates to a current sensing and/or control circuit with reduced sensing errors. A current control circuit for controlling a load current into an electronic device is described. The current control circuit comprises an array of control transistors configured to adjust the load current provided at an output of the array of control transistors. The load current is drawn from a power supply at an input voltage. Furthermore, the power supply is coupled to an input of the array of control transistors. The circuit further comprises a reference transistor coupled to the power supply at an input of the reference transistor and a reference current source configured to draw a reference current at an output of the reference transistor.
Abstract:
Circuits and methods to control current through a device biasing an output device in case the supply voltage is not higher than the output voltage are disclosed. The circuits and methods are applicable to e.g. LDOs, amplifiers, or buffers. A control loop detects if the supply voltage is not higher than the output voltage and regulates the drain-source voltage of the biasing device. The disclosure reduces power consumption in a driver stage in case the supply voltage is not higher than the output voltage.