Abstract:
A trenched stack-capacitor applied in a memory unit is formed through a simple process of manufacturing a stack capacitor with high density. The process includes steps of: a) forming a contact window in the insulator for exposing a cell contact of the device; b) forming a first conducting layer over the insulator and on side-walls and a base of the contact window; c) forming an etching sacrificial layer over the first conducting layer and in the contact window; d) forming an etching masking layer over a portion of the etching sacrificial layer; e) forming a plural cylindrical etching sacrificial areas by removing an another portion of the etching sacrificial layer while retaining the etching sacrificial layer under the etching masking layer; f) forming a second conducting layer on the top of the etching masking layer, on side walls of the plural cylindrical etching sacrificial areas, over the first conducting layer and in the contact window; g) removing the plural cylindrical etching sacrificial areas while retaining the first conducting layer and the second conducting layer to form a first capacitor plate; h) forming a dielectric layer on the top of the first conducting layer and on the top and side walls of the second conducting layer; and i) forming a third conducting layer over the dielectric layer to serve as a second capacitor plate.
Abstract:
A method is described for fabricating a lightly doped drain MOS FET integrated circuit device with a peeling-free metal silicide gate electrode continues by annealing the gate oxide, the polysilicon layer and the metal silicide layer using a furnace process at a temperature more than about 920.degree. C. and for a time of less than about 40 minutes. A pattern of lightly doped regions is formed in the substrate by ion implantation using the structures as the mask. A low temperature silicon dioxide layer is blanket deposited over the surfaces of the structure. The pattern of lightly doped regions is driven in while maintaining the low temperature silicon oxide over the metal silicide layer by annealing at a temperature of more than about 920.degree. C. The blanket layer is etched to form a dielectric spacer structure upon the sidewalls of each of the gate electrode structures and over the adjacent portions of the substrate, and to remove the silicon oxide layer from the top surfaces of metal silicide layer. Heavily doped regions are formed. A passivation layer which includes a silicon oxide layer and a thicker dielectric layer is formed over the structures. The heavily doped regions are annealed to drivein the impurities at a temperature of more than about 920.degree. C. while maintaining said passivation layer over said metal silicide layer.
Abstract:
A new method of simultaneously forming differential gate oxide for both 3 and 5 V transistors is described. A sacrificial silicon oxide layer is formed on the surface of a semiconductor substrate. Ions are implanted through the sacrificial silicon oxide layer into the planned 3 V transistor area of the semiconductor substrate wherein the implanted ions depress the oxidation rate of the semiconductor substrate. Alternatively, ions are implanted through the sacrificial silicon oxide layer into the planned 5 V transistor area of the semiconductor substrate wherein the implanted ions increase the oxidation rate of the semiconductor substrate. The sacrificial silicon oxide layer is removed and a layer of gate silicon oxide is grown on the surface of the semiconductor substrate. The growth rate of the gate silicon oxide will be slowed in the planned 3 V transistor area or will be increased in the planned 5 V transistor area resulting in a gate silicon oxide layer which is relatively thinner in the planned 3 V transistor area and relatively thicker in the planned 5 V transistor area. A layer of polysilicon is deposited over the gate silicon oxide layer and patterned to form gate electrodes for the 3V and 5V transistors.